Dirofilaria repens is a nematode affecting domestic and wild canids, transmitted by several species of mosquitoes. It usually causes a non-pathogenic subcutaneous infection in dogs and is the principal agent of human dirofilariosis in the Old World. In the last decades, D. repens has increased in prevalence in areas where it has already been reported and its distribution range has expanded into new areas of Europe, representing a paradigmatic example of an emergent pathogen. Despite its emergence and zoonotic impact, D. repens has received less attention by scientists compared to Dirofilaria immitis. In this review we report the recent advances of D. repens infection in dogs and humans, and transmission by vectors, and discuss possible factors that influence the spread and increase of this zoonotic parasite in Europe. There is evidence that D. repens has spread faster than D. immitis from the endemic areas of southern Europe to northern Europe. Climate change affecting mosquito vectors and the facilitation of pet travel seem to have contributed to this expansion; however, in the authors’ opinion, the major factor is likely the rate of undiagnosed dogs continuing to perpetuate the life-cycle of D. repens. Many infected dogs remain undetected due to the subclinical nature of the disease, the lack of rapid and reliable diagnostic tools and the poor knowledge and still low awareness of D. repens in non-endemic areas. Improved diagnostic tools are warranted to bring D. repens diagnosis to the state of D. immitis diagnosis, as well as improved screening of imported dogs and promotion of preventative measures among veterinarians and dog owners. For vector-borne diseases involving pets, veterinarians play a significant role in prevention and should be more aware of their responsibility in reducing the impact of the zoonotic agents. In addition, they should enhance multisectorial collaboration with medical entomologists and the public health experts, under the concept and the actions of One Health-One Medicine.Electronic supplementary materialThe online version of this article (10.1186/s13071-018-3205-x) contains supplementary material, which is available to authorized users.
BackgroundThe taxonomic status of the brown dog tick (Rhipicephalus sanguineus sensu stricto), which has long been regarded as the most widespread tick worldwide and a vector of many pathogens to dogs and humans, is currently under dispute.MethodsWe conducted a comprehensive morphological and genetic study of 278 representative specimens, which belonged to different species (i.e., Rhipicephalus bursa, R. guilhoni, R. microplus, R. muhsamae, R. pusillus, R. sanguineus sensu lato, and R. turanicus) collected from Europe, Asia, Americas, and Oceania. After detailed morphological examination, ticks were molecularly processed for the analysis of partial mitochondrial (16S rDNA, 12S rDNA, and cox1) gene sequences.ResultsIn addition to R. sanguineus s.l. and R. turanicus, three different operational taxonomic units (namely, R. sp. I, R. sp. II, and R. sp. III) were found on dogs. These operational taxonomical units were morphologically and genetically different from R. sanguineus s.l. and R. turanicus. Ticks identified as R. sanguineus s.l., which corresponds to the so-called “tropical species” (=northern lineage), were found in all continents and genetically it represents a sister group of R. guilhoni. R. turanicus was found on a wide range of hosts in Italy and also on dogs in Greece.ConclusionsThe tropical species and the temperate species (=southern lineage) are paraphyletic groups. The occurrence of R. turanicus in the Mediterranean region is confirmed. A consensual re-description of R. sanguineus s.s. and R. turanicus will be necessary to solve the taxonomic problems within the so-called R. sanguineus group.
With the exception of Aelurostrongylus abstrusus, feline lungworms have been poorly studied. Information on their distribution is patchy and mostly limited to case reports. In this study, the occurrence of feline lungworms and co-infecting gastrointestinal parasites has been investigated in 12 European countries (i.e. Austria, Belgium, Bulgaria, France, Greece, Hungary, Italy, Portugal, Romania, Spain, Switzerland and the United Kingdom). An average of 10 domestic cats, with regular outdoor access, was sampled each month for 12months, and freshly passed faeces were collected. Stools were processed using a McMaster assay and a quantitative Baermann-Wetzel method. Animals positive for lungworms and/or gastrointestinal parasites were treated with a formulation containing fipronil, (S)-methoprene, eprinomectin, and praziquantel (Broadline®, Merial), and re-sampled 28days post-treatment. The association between lungworm infection and risk factors was analysed using statistical medians/means and the efficacy of the treatment against each lungworm species was assessed. Of 1990 cats sampled, 613 (30.8%) were positive for at least one parasite, while 210 (10.6%) were infected by lungworms. The prevalence of lungworm infection varied between the sampled sites, with the highest recorded in Bulgaria (35.8%) and the lowest in Switzerland (0.8%). None of the cats from Austria or the United Kingdom were infected by lungworms. Aelurostrongylus abstrusus was the species most frequently detected (78.1%), followed by Troglostrongylus brevior (19.5%), Eucoleus aerophilus (14.8%) and Oslerus rostratus (3.8%). The overall efficacy of the treatment was 99% for A. abstrusus and 100% for T. brevior, O. rostratus and E. aerophilus. Data presented provide a comprehensive account of the diagnosis, epidemiology and treatment of feline lungworms in Europe, as well as of the occurrence of co-infections by gastrointestinal parasites.
BackgroundTicks may transmit a large variety of pathogens, which cause illnesses in animals and humans, commonly referred to as to tick-borne diseases (TBDs). The incidence of human TBDs in Italy is underestimated because of poor surveillance and the scant amount of studies available.MethodsSamples (n = 561) were collected from humans in four main geographical areas of Italy (i.e., northwestern, northeastern, southern Italy, and Sicily), which represent a variety of environments. After being morphologically identified, ticks were molecularly tested with selected protocols for the presence of pathogens of the genera Rickettsia, Babesia, Theileria, Candidatus Neoehrlichia mikurensis, Borrelia and Anaplasma.ResultsTicks belonged to 16 species of the genera Argas, Dermacentor, Haemaphysalis, Hyalomma, Ixodes and Rhipicephalus, with Ixodes ricinus (59.5%) being the species most frequently retrieved, followed by Rhipicephalus sanguineus sensu lato (21.4%). Nymphs were the life stage most frequently retrieved (41%), followed by adult females (34.6%). The overall positivity to any pathogen detected was 18%. Detected microorganisms were Rickettsia spp. (17.0%), Anaplasma phagocytophilum (0.8%), Borrelia afzelii (0.5%), Borrelia valaisiana (0.3%), C. N. mikurensis (0.5%) and Babesia venatorum (0.6%).ConclusionsResults indicate that people living in the Italian peninsula are at risk of being bitten by different tick species, which may transmit a plethora of TBD causing pathogens and that co-infections may also occur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.