TUS (Tracking Ultraviolet Set-up) is the world's first orbital detector of ultra-high-energy cosmic rays (UHECRs). It was launched into orbit on 28th April 2016 as a part of the scientific payload of the Lomonosov satellite. The main aim of the mission was to test the technique of measuring the ultraviolet fluorescence and Cherenkov radiation of extensive air showers generated by primary cosmic rays with energies above ∼100 EeV in the Earth atmosphere from space. During its operation for 1.5 years, TUS registered almost 80,000 events with a few of them satisfying conditions anticipated for extensive air showers (EASs) initiated by UHECRs. Here we discuss an event registered on 3rd October 2016. The event was measured in perfect observation conditions as an ultraviolet track in the nocturnal atmosphere of the Earth, with the kinematics and the light curve similar to those expected from an EAS. A reconstruction of parameters of a primary particle gave the zenith angle around 44̂ but an extreme energy not compatible with the cosmic ray energy spectrum obtained with ground-based experiments. We discuss in details all conditions of registering the event, explain the reconstruction procedure and its limitations and comment on possible sources of the signal, both of anthropogenic and astrophysical origin. We believe this detection represents a significant milestone in the space-based observation of UHECRs because it proves the capability of an orbital telescope to detect light signals with the apparent motion and light shape similar to what are expected from EASs. This is important for the on-going development of the future missions KLYPVE-EUSO and POEMMA, aimed for studying UHECRs from space.
Weather forecasts over mountainous terrain are challenging due to the complex topography that is necessarily smoothed by actual local-area models. As complex mountainous territories represent 20% of the Earth’s surface, accurate forecasts and the numerical resolution of the interaction between the surface and the atmospheric boundary layer are crucial. We present an assessment of the Weather Research and Forecasting model with two different grid spacings (1 km and 0.5 km), using two topography datasets (NASA Shuttle Radar Topography Mission and Global Multi-resolution Terrain Elevation Data 2010, digital elevation models) and four land-cover-description datasets (Corine Land Cover, U.S. Geological Survey land-use, MODIS30 and MODIS15, Moderate Resolution Imaging Spectroradiometer land-use). We investigate the Ortles Cevadale region in the Rhaetian Alps (central Italian Alps), focusing on the upper Forni Glacier proglacial area, where a micrometeorological station operated from 28 August to 11 September 2017. The simulation outputs are compared with observations at this micrometeorological station and four other weather stations distributed around the Forni Glacier with respect to the latent heat, sensible heat and ground heat fluxes, mixing-layer height, soil moisture, 2-m air temperature, and 10-m wind speed. The different model runs make it possible to isolate the contributions of land use, topography, grid spacing, and boundary-layer parametrizations. Among the considered factors, land use proves to have the most significant impact on results.
Mountain areas are characterized by geomorphic processes, especially mass wasting and avalanches, which may impact the landscape affecting also the biological component, trees included. If sites colonized by trees are characterized by geomorphic features with a high Global and Scientific Value, including Representativeness of geomorphological processes, Educational Exemplarity, and Integrity, they can be considered geomorphosites. In the framework of assessment of the Scientific Value of geomorphosites, Ecological Support Role is of great importance. Hence, tree rings derived information can be used as indicators to refine the Scientific Value of the sites and also to propose multidisciplinary approaches to understand landscape dynamics. In fact, trees colonizing sites of geomorphological interest are used for detecting past and present events and tree rings may be considered ecological indicators under different points of view. Arboreal vegetation can register growth disturbances in terms of morphological features, at macro-(particular morphologies of trunks) and micro-scale (annual growth rings, stress indicators like compression wood, traumatic resin ducts), becoming a powerful indicator of the geomorphic activity affecting the landscape. In some cases, combined with other techniques like climate data analysis, they may allow refining the often lacunose historical records of geomorphic events impacting different territories. The integrated analysis carried out in the Loana Valley (Sesia Val Grande Geopark, Western Italian Alps), considering a selection of geomorphosites affected by mass wasting processes and avalanches and located along a touristic trail, allow to detect which meteorological thresholds favour hydrogeological instability (i.e. overcome of Mean Annual Rainfalls of 6-10%). Tree rings data coming from the investigated sites provided information on the recurrence of geomorphic activity allowing filling gaps within the historical archives by individuating years during which hydrogeological or snow-related events probably occurred and that were missed (i.e. 1986, 1989, 2001, 2007), and providing details on sites for which temporal constraints had not been found before (i.e. Pizzo Stagno Complex System). Finally, investigated sites demonstrated to differently record the history of instability affecting the area and this difference is mirrored in the sites values that are adopted in the framework of geoheritage analysis (Scientific Value, Ecological Support Role and Educational Exemplarity). The proposed multidisciplinary approach, including geomorphology, dendrogeomorphology and climatology, represents, hence, a useful tool in geoheritage valorisation and management strategies.
The measurement of turbulent fluxes in the atmospheric boundary layer is usually performed using fast anemometers and the Eddy Covariance technique. This method has been applied here and investigated in a complex mountainous terrain. A field campaign has recently been conducted at Alpe Veglia (the Central-Western Italian Alps, 1746 m a.s.l.) where both standard and micrometeorological data were collected. The measured values obtained from an ultrasonic anemometer were analysed using a filtering procedure and three different coordinate rotation procedures: Double (DR), Triple Rotation (TR) and Planar Fit (PF) on moving temporal windows of 30 and 60 min. A quality assessment was performed on the sensible heat and momentum fluxes and the results show that the measured turbulent fluxes at Alpe Veglia were of a medium-high quality level and rarely passed the stationary flow test. A comparison of the three coordinate procedures, using quality assessment and sensible heat flux standard deviations, revealed that DR and TR were comparable, with significant differences, mainly under low-wind conditions. The PF method failed to satisfy the physical requirement for the multiple planarity of the flow, due to the complexity of the mountainous terrain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.