Multiphase flow in porous media is strongly influenced by the wettability of the system, which affects the arrangement of the interfaces of different phases residing in the pores. We present a method for estimating the effective contact angle, which quantifies the wettability and controls the local capillary pressure within the complex pore space of natural rock samples, based on the physical constraint of constant curvature of the interface between two fluids. This algorithm is able to extract a large number of measurements from a single rock core, resulting in a characteristic distribution of effective in situ contact angle for the system, that is modelled as a truncated Gaussian probability density distribution. The method is first validated on synthetic images, where the exact angle is known analytically; then the results obtained from measurements within the pore space of rock samples imaged at a resolution of a few microns are compared to direct manual assessment. Finally the method is applied to X-ray micro computed tomography (micro-CT) scans of two Ketton cores after waterflooding, that display water-wet and mixed-wet behaviour. The resulting distribution of in situ contact angles is characterized in terms of a mixture of truncated Gaussian densities.
During CO 2 storage in depleted oil fields, at immiscible conditions, CO 2 can be trapped in the pore space by capillary forces, providing safe storage over geological times-a phenomenon named capillary trapping. Synchrotron X-ray imaging was used to obtain dynamic three-dimensional images of the flow of the three phases involved in this process-brine, oil and gas (nitrogen)-at high pressure and temperature, inside the pore space of Ketton limestone. First, using continuous imaging of the porous medium during gas injection, performed after waterflooding, we observed chains of multiple displacements between the three phases, caused by the connectivity of the pore space. Then, brine was re-injected and double capillary trapping-gas trapping by oil and oil trapping by brine-was the dominant double displacement event. We computed pore occupancy, saturations, interfacial area, mean curvature and Euler characteristic to elucidate these double capillary trapping phenomena, which lead to a high residual gas saturation. Pore occupancy and saturation results show an enhancement of gas trapping in the presence of both oil and brine, which potentially makes CO 2 storage in depleted oil reservoirs attractive, combining safe storage with enhanced oil recovery through immiscible gas injection. Mean curvature measurements were used to assess the capillary pressures between fluid pairs during double displacements and these confirmed the stability of the observed spreading oil layers, which facilitated the double capillary trapping. Interfacial area and Euler characteristic increased, indicating lower oil and gas connectivity, due to the capillary trapping events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.