Physiological time series are affected by many factors, making them highly nonlinear and nonstationary. As a consequence, heart rate time series are often considered difficult to predict and handle. However, heart rate behavior can indicate underlying cardiovascular and respiratory diseases as well as mood disorders. Given the importance of accurate modeling and reliable predictions of heart rate fluctuations for the prevention and control of certain diseases, it is paramount to identify models with the best performance in such tasks. The objectives of this study were to compare the results of three different forecasting models (Autoregressive Model, Long Short-Term Memory Network, and Convolutional Long Short-Term Memory Network) trained and tested on heart rate beats per minute data obtained from twelve heterogeneous participants and to identify the architecture with the best performance in terms of modeling and forecasting heart rate behavior. Heart rate beats per minute data were collected using a wearable device over a period of 10 days from twelve different participants who were heterogeneous in age, sex, medical history, and lifestyle behaviors. The goodness of the results produced by the models was measured using both the mean absolute error and the root mean square error as error metrics. Despite the three models showing similar performance, the Autoregressive Model gave the best results in all settings examined. For example, considering one of the participants, the Autoregressive Model gave a mean absolute error of 2.069 (compared to 2.173 of the Long Short-Term Memory Network and 2.138 of the Convolutional Long Short-Term Memory Network), achieving an improvement of 5.027% and 3.335%, respectively. Similar results can be observed for the other participants. The findings of the study suggest that regardless of an individual’s age, sex, and lifestyle behaviors, their heart rate largely depends on the pattern observed in the previous few minutes, suggesting that heart rate can be reasonably regarded as an autoregressive process. The findings also suggest that minute-by-minute heart rate prediction can be accurately performed using a linear model, at least in individuals without pathologies that cause heartbeat irregularities. The findings also suggest many possible applications for the Autoregressive Model, in principle in any context where minute-by-minute heart rate prediction is required (arrhythmia detection and analysis of the response to training, among others).
Stock market prices are known to be very volatile and noisy, and their accurate forecasting is a challenging problem. Traditionally, both linear and non-linear methods (such as ARIMA and LSTM) have been proposed and successfully applied to stock market prediction, but there is room to develop models that further reduce the forecast error. In this paper, we introduce a Deep Convolutional Generative Adversarial Network (DCGAN) architecture to deal with the problem of forecasting the closing price of stocks. To test the empirical performance of our proposed model we use the FTSE MIB (Financial Times Stock Exchange Milano Indice di Borsa), the benchmark stock market index for the Italian national stock exchange. By conducting both single-step and multi-step forecasting, we observe that our proposed model performs better than standard widely used tools, suggesting that Deep Learning (and in particular GANs) is a promising field for financial time series forecasting.
Background The spread of SARS-CoV-2, originating in Wuhan, China, was classified as a pandemic by the World Health Organization on March 11, 2020. The governments of affected countries have implemented various measures to limit the spread of the virus. The starting point of this paper is the different government approaches, in terms of promulgating new legislative regulations to limit the virus diffusion and to contain negative effects on the populations. Objective This paper aims to study how the spread of SARS-CoV-2 is linked to government policies and to analyze how different policies have produced different results on public health. Methods Considering the official data provided by 4 countries (Italy, Germany, Sweden, and Brazil) and from the measures implemented by each government, we built an agent-based model to study the effects that these measures will have over time on different variables such as the total number of COVID-19 cases, intensive care unit (ICU) bed occupancy rates, and recovery and case-fatality rates. The model we implemented provides the possibility of modifying some starting variables, and it was thus possible to study the effects that some policies (eg, keeping the national borders closed or increasing the ICU beds) would have had on the spread of the infection. Results The 4 considered countries have adopted different containment measures for COVID-19, and the forecasts provided by the model for the considered variables have given different results. Italy and Germany seem to be able to limit the spread of the infection and any eventual second wave, while Sweden and Brazil do not seem to have the situation under control. This situation is also reflected in the forecasts of pressure on the National Health Services, which see Sweden and Brazil with a high occupancy rate of ICU beds in the coming months, with a consequent high number of deaths. Conclusions In line with what we expected, the obtained results showed that the countries that have taken restrictive measures in terms of limiting the population mobility have managed more successfully than others to contain the spread of COVID-19. Moreover, the model demonstrated that herd immunity cannot be reached even in countries that have relied on a strategy without strict containment measures.
Background Reducing the number of items in a questionnaire while maintaining relevant information is important as it is associated with advantages such as higher respondent engagement and reduced response error. However, in health care, after the original design, an a posteriori check of the included items in a questionnaire is often overlooked or considered to be of minor importance. When conducted, this is often based on a single selected method. We argue that before finalizing any lifestyle questionnaire, a posteriori validation should always be conducted using multiple approaches to ensure the robustness of the results. Objective The objectives of this study are to compare the results of two statistical methods for item reduction (variance inflation factor [VIF] and factor analysis [FA]) in a lifestyle questionnaire constructed by combining items from different sources and analyze the different results obtained from the 2 methods and the conclusions that can be made about the original items. Methods Data were collected from 79 participants (heterogeneous in age and sex) with a high risk of metabolic syndrome working in a financial company based in Tokyo. The lifestyle questionnaire was constructed by combining items (asked with daily, weekly, and monthly frequency) from multiple validated questionnaires and other selected questions. Item reduction was conducted using VIF and exploratory FA. Adequacy tests were used to check the data distribution and sampling adequacy. Results Among the daily and weekly questions, both VIF and FA identified redundancies in sleep-related items. Among the monthly questions, both approaches identified redundancies in stress-related items. However, the number of items suggested for reduction often differed: VIF suggested larger reductions than FA for daily questions but fewer reductions for weekly questions. Adequacy tests always confirmed that the structural detection was adequate for the considered items. Conclusions As expected, our analyses showed that VIF and FA produced both similar and different findings, suggesting that questionnaire designers should consider using multiple methods for item reduction. Our findings using both methods indicate that many questions, especially those related to sleep, are redundant, indicating that the considered lifestyle questionnaire can be shortened.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.