In this paper, a full experimental characterization of a micro-scale ORC system is presented. The facility under investigation is driven by a piston expander prototype, made of three cylinders arranged radially around the drive shaft. The system is rated for a thermal input around 30 kW, being suitable for residential, tertiary sector or small industry applications. It is conceived for exploiting low temperature heat sources, such as solar collectors, biomass boilers, geothermal energy or waste heat streams. The facility was provided with an electric boiler as heat source, which warms water up to 90 °C, and cold water at ambient temperature as heat sink. A test campaign was performed varying the hot source temperature and the organic fluid feed pump velocity, in order to characterize the system behavior at different off-design working conditions. The electric consumption of the ORC feed pump was measured, in order to quantify the actual impact of the auxiliaries on the overall efficiency. Moreover, the number of electric loads connected to the generator was varied, changing the equivalent phase impedance value, for evaluating the effect on the expander rotating speed and power output.The experimental analysis demonstrated that small reciprocating expander is suitable for exploiting low enthalpy heat sources, with quite good performances compared to other architectures like scroll and screw expanders, more applied within low temperature sources. The results show that the gross electric power output varied between 250 W and 1150 W, depending on the expander speed and on the number of electric loads activated. The expander total efficiency showed a barely constant trend around 40 %. The pump total efficiency varied between 10 % and 20 %, increasing with the pump rotational speed. The maximum ORC gross and net efficiency were 4.5 % and 2.2 % respectively, confirming that the auxiliaries impact cannot be considered negligible in such type of systems.
Solid particle ingestion is one of the principal degradation mechanisms in the turbine and compressor sections of gas turbines. In particular, in industrial applications, the microparticles that are not captured by the air filtration system cause fouling and, consequently, a performance drop of the compressor. This paper presents three-dimensional numerical simulations of the microparticle ingestion (0 μm–2 μm) on an axial compressor rotor carried out by means of a commercial computational fluid dynamic (CFD) code. Particles of this size can follow the main air flow with relatively little slip, while being impacted by flow turbulence. It is of great interest to the industry to determine which areas of the compressor airfoils are impacted by these small particles. Particle trajectory simulations use a stochastic Lagrangian tracking method that solves the equations of motion separate from the continuous phase. Then, the NASA Rotor 37 is considered as a case study for the numerical investigation. The compressor rotor numerical model and the discrete phase treatment have been validated against the experimental and numerical data available in literature. The number of particles, sizes, and concentrations are specified in order to perform a quantitative analysis of the particle impact on the blade surface. The results show that microparticles tend to follow the flow by impacting at full span with a higher impact concentration on the pressure side (PS). The suction side (SS) is affected only by the impact of the smaller particles (up to 1 μm). Particular fluid dynamic phenomena, such as separation, stagnation point, and tip leakage vortex, strongly influence the impact location of the particles.
Flow instability conditions, in particular during surge and stall phenomena, have always influenced the operational reliability of turbocompressors and have attracted significant interest resulting in extensive literature. Nowadays, this subject is still one of the most investigated because of its high relevance on centrifugal and axial compressor operating flow range, performance, and efficiency. Many researchers approach this important issue by developing numerical models, whereas others approach it through experimental studies specifically carried out in order to better comprehend this phenomenon. The aim of this paper is to experimentally analyze the stable and unstable operating conditions of an aeronautic turboshaft gas turbine axial-centrifugal compressor installed on a brand new test rig properly designed for this purpose. The test facility is set up in order to obtain (i) the compressor performance maps at rotational speeds up to 25,000 rpm and (ii) the compressor transient behavior during surge. By using two different test rig layouts, instabilities occurring in the compressor, beyond the peak of the characteristic curve, are identified and investigated. These two types of analysis are carried out, thanks to pressure, temperature, and mass flow sensors located in strategic positions along the circuit. These measurement sensors are part of a proper control and acquisition system, characterized by an adjustable sampling frequency. Thus, the desired operating conditions of the compressor in terms of mass flow and rotational speed and transient of these two parameters are regulated by this dedicated control system
Fouling is a major problem in gas turbines for aeropropulsion because the formation of aggregates on the wet surfaces of the machine affects aerodynamic and heat loads. The representation of fouling in computational fluid dynamics (CFD) is based on the evaluation of the sticking probability, i.e., the probability a particle touching a solid surface has to stick to that surface. Two main models are currently available in literature for the evaluation of the sticking coefficient: one is based on a critical threshold for the viscosity, and the other is based on the normal velocity to the surface. However, both models are application specific and lack generality. This work presents an innovative model for the estimation of the sticking probability. This quantity is evaluated by comparing the kinetic energy of the particle with an activation energy which describes the state of the particle. The sticking criterion takes the form of an Arrhenius-type equation. A general formulation for the sticking coefficient is obtained. The method, named energy-based fouling (EBFOG), is the first “energy”-based model presented in the open literature able to account any common deposition effect in gas turbines. The EBFOG model is implemented into a Lagrangian tracking procedure, coupled to a fully three-dimensional CFD solver. Particles are tracked inside the domain, and equations for the momentum and temperature of each particle are solved. The local geometry of the blade is modified accordingly to the deposition rate. The mesh is modified, and the CFD solver updates the flow field. The application of this model to particle deposition in high-pressure turbine vanes is investigated, showing the flexibility of the proposed methodology. The model is particularly important in aircraft engines where the effect of fouling for the turbine, in particular the reduction of the high pressure (HP) nozzle throat area, influences heavily the performance by reducing the core capacity. The energy-based approach is used to quantify the throat area reduction rate and estimate the variation in the compressor operating condition. The compressor operating point as a function of the time spent operating in a harsh environment can be in this way predicted to estimate, for example, the time that an engine can fly in a cloud of volcanic ashes. The impact of fouling on the throat area of the nozzle is quantified for different conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.