A~10-11 bp periodicity in dinucleotides imparting DNA bending, with shorter periods found in organisms with positively-supercoiled DNA and longer periods found in organisms with negatively-supercoiled DNA, was previously suggested to assist in DNA compaction. However, when measured with more robust methods, variation in the observed periods between organisms with different growth temperatures is not consistent with that hypothesis. We demonstrate that dinucleotide periodicity does not arise solely by mutational biases but is under selection. We found variation between genomes in both the period and the suite of dinucleotides that are periodic. Whereas organisms with similar growth temperatures have highly variable periods, differences in periods increase with phylogenetic distance between organisms. In addition, while the suites of dinucleotides under selection for periodicity become more dissimilar among more distantly-related organisms, there is a core set of dinucleotides that are strongly periodic among genomes in all domains of life. Notably, this core set of periodic motifs are not involved in DNA bending. These data indicate that dinucleotide periodicity is an ancient genomic architecture which may play a role in shaping the evolution of genes and genomes.
Antigenically distinct members of bacterial species can be differentially distributed in the environment. Predators known to consume antigenically distinct prey with different efficiencies are also differentially distributed. Here we show that antigenically distinct, but otherwise isogenic and physiologically indistinct, strains of Salmonella enterica show differential survival in natural soil, sediment and intestinal environments, where they would face a community of predators. Decline in overall cell numbers is attenuated by factors that inhibit the action of predators, including heat and antiprotozoal and antihelminthic drugs. Moreover, the fitness of strains facing these predators -calculated by comparing survival with and without treatments attenuating predator activity -varies between environments. These results suggest that relative survival in natural environments is arbitrated by communities of natural predators whose feeding preferences, if not species composition, vary between environments. These data support the hypothesis that survival against natural predators may drive the differential distribution of bacteria among microenvironments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.