Plastic waste is an issue of global concern because of the environmental impact of its accumulation in waste management systems and ecosystems. Biodegradability was proposed as a solution to overcome this problem; however, most biodegradable plastics were designed to degrade under aerobic conditions, ideally fulfilled in a composting plant. These new plastics could arrive to anaerobic environments, purposely or frequently, because of their mismanagement at the end of their useful life. This review analyzes the behavior of biodegradable and conventional plastics under anaerobic conditions, specifically in anaerobic digestion systems and landfills. A review was performed in order to identify: (a) the environmental conditions found in anaerobic digestion processes and landfills, as well as the mechanisms for degradation in those environments; (b) the experimental methods used for the assessment of biodegradation in anaerobic conditions; and (c) the extent of the biodegradation process for different plastics. Results show a remarkable variability of the biodegradation rate depending on the type of plastic and experimental conditions, with clearly better performance in anaerobic digestion systems, where temperature, water content, and inoculum are strictly controlled. The majority of the studied plastics showed that thermophilic conditions increase degradation. It should not be assumed that plastics designed to be degraded aerobically will biodegrade under anaerobic conditions, and an exact match must be done between the specific plastics and the end of life options that they will face.
Degradable plastics are used as a way to decrease the environmental impact of these materials when they become waste. However, they can reach natural ecosystems due to littering and bad management. This research assesses the performance of oxodegradable and compostable plastics on marine environments through a respirometric lab test. Probes of the plastics, with and without previous simulated weathering, were put in contact for 48 days with a marine inoculum, in a system that guarantees continuous aeration and capture of the produced CO2. After the test, the samples were also assessed in terms of their loss of mechanical properties. The compostable plastic exhibited the higher degree of mineralization (10%), while there was no difference between the polyolefins (2.06%-2.78%), with or without presence of pro-oxidants or previous abiotic degradation. On the other hand, exposition to UV light promoted a higher loss of elongation at break in the oxodegradables plastic (>68%). The results show that the studied plastics achieve very low biodegradation rates while presenting a higher rate of loss of physical integrity. This combination of phenomena could lead to their fragmentation before significant biodegradation can occur. The risk of microplastics formation must be prevented by avoiding the presence of the materials in marine environments, even if they have shown suitability for some waste management scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.