Studies on the effect of scopolamine on memory are abundant but so far only regulation of the muscarinic receptor (M1) has been reported. We hypothesized that levels of other cholinergic brain receptors as the nicotinic receptors and the N-methyl-D-aspartate (NMDA) receptor, known to be involved in memory formation, would be modified by scopolamine administration.C57BL/6J mice were used for the experiments and divided into four groups. Two groups were given scopolamine 1 mg/kg i.p. (the first group was trained and the second group untrained) in the multiple T-maze (MTM), a paradigm for evaluation of spatial memory. Likewise, vehicle-treated mice were trained or untrained thus serving as controls. Hippocampal levels of M1, nicotinic receptor alpha 4 (Nic4) and 7 (Nic7) and subunit NR1containing complexes were determined by immunoblotting on blue native gel electrophoresis.Vehicle-treated trained mice learned the task and showed memory retrieval on day 8, while scopolamine-treatment led to significant impairment of performance in the MTM. At the day of retrieval, hippocampal levels for M1, Nic7 and NR1 were higher in the scopolamine treated groups than in vehicle-treated groups.The concerted action, i.e. the pattern of four brain receptor complexes regulated by the anticholinergic compound scopolamine, is shown. Insight into probable action mechanisms of scopolamine at the brain receptor complex level in the hippocampus is provided. Scopolamine treatment is a standard approach to test cognitive enhancers and other psychoactive compounds in pharmacological studies and therefore knowledge on mechanisms is of pivotal interest.
Expression of transgenes from adenovirus vectors has become an extremely important and widely used tool in experimental cancer research and many other areas in the life sciences. It needs to be kept in mind, however, that adenoviruses are human pathogens and avoiding exposure of laboratory personnel to infectious viral particles is therefore an important concern. This issue seems even more important when the transgenes expressed for experimental purposes include oncogenic sequences. Decontamination procedures are thus required, whenever laboratory experiments with adenovirus vectors are performed and the effectiveness of these procedures has to be established. While many reports exist on the decontamination of blood and pharmaceutical products, data on the stability of adenoviruses during experiments performed in most life science laboratories are very scarce. One reason for this is that many of the methods used for assessing viral decontamination are time consuming and laborious and cannot easily be incorporated into the broad range of experimental setups typically performed in the laboratory. In this chapter we describe a reliable, sensitive, and simple method for the assessment of adenovirus decontamination by the use of an adenovirus expressing green fluorescent protein (GFP). The GFP adenovirus is subjected to various test conditions and afterwards susceptible indicator cells are exposed to the recovered virions. GFP expression is detected by a combination of fluorescence microscopy and flow cytometry. The simplicity and flexibility of the method allows one to monitor viral decontamination during the different scenarios occurring in the life science laboratory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.