Mutations in THAP1 have been associated with dystonia 6. THAP1 encodes a transcription factor with mostly unknown targets. We tested the hypothesis that THAP1 regulates the expression of DYT1 (TOR1A), another dystonia-causing gene. After characterization of the TOR1A promoter, we demonstrate that THAP1 binds to the core promoter of TOR1A. Further, we report that wild type THAP1 represses the expression of TOR1A, whereas dystonia 6-associated mutant THAP1 results in decreased repression of TOR1A. Our data demonstrate that THAP1 regulates the transcription of TOR1A, suggesting transcriptional dysregulation as a cause of dystonia.
To identify the underlying genetic cause in a consanguineous family with apparently recessively inherited dystonia, we performed genome-wide homozygosity mapping. This revealed 2 candidate regions including the THAP1 gene, where heterozygous mutations cause dystonia 6. A homozygous missense mutation in THAP1 (c.95T>A; p.Leu32His) was found in all 3 affected siblings. Symptoms started in childhood in the legs and became generalized within a few years. Three heterozygous mutation carriers were unaffected. Because THAP1 regulates the expression of the DYT1 gene, we used reporter gene assays to show that DYT1 expression was significantly increased for Leu32His. However, this increase was less pronounced than for other THAP1 mutations that cause dystonia in the heterozygous state. Our data suggest that homozygous THAP1 mutations cause dystonia and may be associated with a less severe dysfunction of the encoded protein compared with heterozygous disease-causing mutations.
A three-nucleotide (GAG) deletion (ΔE) in TorsinA (TOR1A) has been identified as the most common cause of dominantly inherited early-onset torsion dystonia (DYT1). TOR1A encodes a chaperone-like AAA+-protein localized in the endoplasmic reticulum. Currently, only three additional, likely mutations have been reported in single dystonia patients. Here, we report two new, putative TOR1A mutations (p.A14_P15del and p.E121K) that we examined functionally in comparison with wild-type (WT) protein and two known mutations (ΔE and p.R288Q). While inclusion formation is a characteristic feature for ΔE TOR1A, elevated levels of aggregates for other mutations were not observed when compared with WT TOR1A. WT and mutant TOR1A showed preferred degradation through the autophagy-lysosome pathway, which is most pronounced for p.A14_P15del, p.R288Q, and ΔE TOR1A. Notably, blocking of the autophagy pathway with bafilomycin resulted in a significant increase in inclusion formation in p.E121K TOR1A. In addition, all variants had an influence on protein stability. Although the p.A14_P15del mutation affects the proposed oligomerization domain of TOR1A, this mutation did not disturb the ability to dimerize. Our findings demonstrate functional changes for all four mutations on different levels. Thus, both diagnostic and research genetic screening of dystonia patients should not be limited to testing for the ∆E mutation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.