Feeding is critical for survival and disruption in the mechanisms that govern food intake underlie disorders such as obesity and anorexia nervosa. It is important to understand both food intake and food motivation to reveal mechanisms underlying feeding disorders. Operant behavioral testing can be used to measure the motivational component to feeding, but most food intake monitoring systems do not measure operant behavior. Here, we present a new solution for monitoring both food intake and motivation in rodent home-cages: The Feeding Experimentation Device version 3 (FED3). FED3 measures food intake and operant behavior in rodent home-cages, enabling longitudinal studies of feeding behavior with minimal experimenter intervention. It has a programmable output for synchronizing behavior with optogenetic stimulation or neural recordings. Finally, FED3 design files are open-source and freely available, allowing researchers to modify FED3 to suit their needs.
Video tracking is an essential tool in rodent research. Here, we demonstrate a machine vision rodent tracking camera based on a low-cost, open-source, machine vision camera, the OpenMV Cam M7. We call our device the Rodent Arena Tracker (RAT), and it is a pocket-sized machine vision-based position tracker. The RAT does not require a tethered computer to operate and costs about $120 per device to build. These features make the RAT scalable to large installations and accessible to research institutions and educational settings where budgets may be limited. The RAT processes incoming video in real-time at 15Hz and saves X and Y positional information to an onboard microSD card. The RAT also provides a programmable multi-function input/output pin that can be used for controlling other equipment, transmitting tracking information in real time, or receiving data from other devices. Finally, the RAT includes a real-time clock (RTC) for accurate time stamping of data files. Real-time image processing averts the need to save video, greatly reducing storage, data handling, and communication requirements. To demonstrate the capabilities of the RAT, we performed three validation studies: 1) a 4-day experiment measuring circadian activity patterns; 2) logging of mouse positional information alongside status information from a pellet dispensing device; and 3) control of an optogenetic stimulation system for a realtime place preference (RTPP) brain stimulation reinforcement study. Our design files, build instructions, and code for the RAT implementation are open source and freely available online to facilitate dissemination and further development of the RAT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.