In this article, a technique for measuring fast periodic motion is proposed. The sequencing used in this technique is similar to the one used in conventional color Doppler systems. However, a phase correction algorithm is introduced which compensates for the acquisition delays. Criteria for the types of motion which could be detected correctly by the system are developed and presented. Effective frame rates of several hundred hertz to a few kilohertz have been achieved with the system. Applications of the system in tissue elastography are presented together with experimental results from tissue mimicking phantoms.
This paper presents VEGAS, a new soft vector architecture, in which the vector processor reads and writes directly to a scratchpad memory instead of a vector register file. The scratchpad memory is a more efficient storage medium than a vector register file, allowing up to 9× more data elements to fit into on-chip memory. In addition, the use of fracturable ALUs in VEGAS allow efficient processing of bytes, halfwords and words in the same processor instance, providing up to 4× the operations compared to existing fixedwidth soft vector ALUs. Benchmarks show the new VE-GAS architecture is 10× to 208× faster than Nios II and has 1.7× to 3.1× better area-delay product than previous vector work, achieving much higher throughput per unit area. To put this performance in perspective, VEGAS is faster than a leading-edge Intel processor at integer matrix multiply. To ease programming effort and provide full debug support, VEGAS uses a C macro API that outputs vector instructions as standard NIOS II/f custom instructions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.