This paper introduces conceptual design principles for a novel class of adaptive structures that provide both flow regulation and control. While of general applicability, these design principles, which revolve around the idea of using the instabilities and elastically nonlinear behaviour of post-buckled panels, are exemplified through a case study: the design of a shape-adaptive air inlet. The inlet comprises a deformable post-buckled member that changes shape depending on the pressure field applied by the surrounding fluid, thereby regulating the inlet aperture. By tailoring the stress field in the post-buckled state and the geometry of the initial, stress-free configuration, the deformable section can snap through to close or open the inlet completely. Owing to its inherent ability to change shape in response to external stimuli—i.e. the aerodynamic loads imposed by different operating conditions—the inlet does not have to rely on linkages and mechanisms for actuation, unlike conventional flow-controlling devices.
The effects of atomic oxygen on three commercial composite materials, based on two space-qualified epoxy resins (tetraglycidyl-4,4 0-diaminodiphenylmethane (TGDDM) cured with a blend of 4,4 0-methylenebis(2,6-diethylaniline) and 4,4 0-methylenebis(2-isopropyl-6-methylaniline); and a blend of TGDDM, bisphenol A diglycidyl ether (DGEBA), and epoxidised novolak resin initiated by N'-(3,4-dichlorophenyl)-N,N-dimethylurea) are studied. Samples were exposed to a total fluence of (3.82 Â 10 20 atom/cm 2), equating to a period of 43 days in low Earth orbit. The flexural rigidity and modulus of all laminates displayed a reduction of 5e10% after the first exposure (equivalent to 20 days in orbit). Fourier transform infrared (FTIR) spectra, obtained during prolonged exposure to atomic oxygen, were interpreted using multivariate analysis to explore the degradation mechanisms.
In the context of strain-energy-deployed space structures, material relaxation effects play a significant role in structures that are stowed for long durations, for example, in a space vehicle prior to launch. Here, the deployment of an ultrathin carbon fiber reinforced plastic (CFRP) tape spring is studied, with the aim of understanding how longduration stowage affects its deployment behavior. Analytical modeling and experiments show that the deployment time increases predictably with stowage time and temperature, and analytical predictions are found to compare well with experiments. For cases where stress relaxation is excessive, the structure is shown to lose its ability to deploy autonomously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.