Working memory (WM) is impaired following sleep loss and may be improved after a nap. The goal of the current study was to better understand sleep-related WM enhancement by: (1) employing a WM task that assesses the ability to hold and report visual representations as well as the fidelity of the reports on a fine scale, (2) investigating neurophysiological properties of sleep and WM capacity as potential predictors or moderators of sleep-related enhancement, and (3) exploring frontal and occipital event-related delay activity to index the neural processing of stimuli in WM. In a within-subjects design, 36 young adults (M = 20, 20 men, 16 women) completed a 300-trial, continuous-report task of visual WM following a 90-min nap opportunity and an equivalent period of wakefulness. Mixed-effect models were used to estimate the odds of successful WM reports and the fidelity of those reports. The odds of a successful report were approximately equal between nap and wake conditions for the start of the task, but by the end, the odds of success were 1.26 times greater in the nap condition. Successful WM reports were more accurate after a nap, independent of the time on task. Neither WM capacity nor any of the sleep variables measured were found to significantly moderate the nap effect on WM. Lastly, napping resulted in amplitude changes for frontal and occipital delay activity relative to the wake condition. The findings are discussed in relation to contemporary models of visual WM and the role of sleep in sustained attention.
Working memory (WM) is impaired following sleep loss and may be improved after a nap. The goal of the current study was to better understand sleep-related WM enhancement by: 1) employing a WM task that assesses the ability to hold and report visual representations as well as the fidelity of the reports on a fine scale, 2) investigating neurophysiological properties of sleep and WM capacity as potential predictors or moderators of sleep-related enhancement, and 3) exploring frontal and occipital event-related delay activity to index the neural processing of stimuli in WM. In a within-subjects design, thirty-six young adults (Mage = 20, 20 men, 16 women) completed a 300-trial, continuous-report task of visual WM following a 90-min nap opportunity and an equivalent period of wakefulness. Mixed-effect models were used to estimate the odds of successful WM reports and the fidelity of those reports. The odds of a successful report were approximately equal between nap and wake conditions at the start of the task, but by the end, the odds of success were 1.26 times greater in the nap condition. Successful WM reports were more accurate after a nap, independent of time on task. Neither WM capacity nor any of the sleep variables measured were found to significantly moderate the nap effect on WM. Lastly, amplitude of frontal and occipital delay activity was altered in the nap relative to the wake condition. The findings are discussed in relation to the role of sleep in sustained attention and contemporary models of visual WM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.