Due to the high genetic heterogeneity of hearing loss, current clinical testing includes sequencing large numbers of genes, which often yields a significant number of novel variants. Therefore, the standardization of variant interpretation is crucial to provide consistent and accurate diagnoses. The Hearing Loss Variant Curation Expert Panel was created within the Clinical Genome Resource to provide expert guidance for standardized genomic interpretation in the context of hearing loss. As one of its major tasks, our Expert Panel has adapted the ACMG/AMP guidelines for the interpretation of sequence variants in hearing loss genes. Here, we provide a comprehensive illustration of the newly specified ACMG/AMP hearing loss rules. Three rules remained unchanged, four rules were removed, and the remaining twenty-one rules were specified. These rules were further validated and refined using a pilot set of 51 variants assessed by curators and expert opinion. Of the 51 variants evaluated in the pilot, 37% (19/51) changed category based upon application of the expert panel specified rules and/or aggregation of evidence across laboratories. These hearing loss-specific ACMG/AMP rules will help standardize variant interpretation, ultimately leading to better care for individuals with hearing loss.
The nonsense-mediated mRNA decay (NMD) pathway functions to degrade both abnormal and wild-type mRNAs. NMD is essential for viability in most organisms, but the molecular basis for this requirement is unknown. Here we show that a single, conserved NMD target, the mRNA coding for the stress response factor growth arrest and DNA-damage inducible 45 (GADD45) can account for lethality in Drosophila lacking core NMD genes. Moreover, depletion of Gadd45 in mammalian cells rescues the cell survival defects associated with NMD knockdown. Our findings demonstrate that degradation of Gadd45 mRNA is the essential NMD function and, surprisingly, that the surveillance of abnormal mRNAs by this pathway is not necessarily required for viability.DOI: http://dx.doi.org/10.7554/eLife.12876.001
Proper interpretation of genomic variants is critical to successful medical decision making based on genetic testing results. A fundamental prerequisite to accurate variant interpretation is the clear understanding of the clinical validity of gene-disease relationships. The Clinical Genome Resource (ClinGen) has developed a semi-quantitative framework to assign clinical validity to gene-disease relationships. Methods: The ClinGen Hearing Loss Gene Curation Expert Panel (HL GCEP) uses this framework to perform evidence-based curations of genes present on testing panels from 17 clinical laboratories in the Genetic Testing Registry. The HL GCEP curated and reviewed 142 genes and 164 gene-disease pairs, including 105 nonsyndromic and 59 syndromic forms of hearing loss. Results: The final outcome included 82 Definitive (50%), 12 Strong (7%), 25 Moderate (15%), 32 Limited (20%), 10 Disputed (6%), and 3 Refuted (2%) classifications. The summary of each curation is date stamped with the HL GCEP approval, is live, and will be kept up-to-date on the ClinGen website (https://search.clinicalgenome.org/kb/gene-validity). Conclusion: This gene curation approach serves to optimize the clinical sensitivity of genetic testing while reducing the rate of uncertain or ambiguous test results caused by the interrogation of genes with insufficient evidence of a disease link.
(200 WORD LIMIT)Due to the high genetic heterogeneity of hearing loss, current clinical testing includes sequencing large numbers of genes, which often yields a significant number of novel variants.Therefore, the standardization of variant interpretation is crucial to provide consistent and accurate diagnoses. The Hearing Loss Variant Curation Expert Panel was created within the Clinical Genome Resource to provide expert guidance for standardized genomic interpretation in the context of hearing loss. As one of its major tasks, our Expert Panel has adapted the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) standards and guidelines for the interpretation of sequence variants in hearing loss genes. Here, we provide a comprehensive illustration of the newly specified ACMG/AMP . CC-BY-ND 4.0 International license It is made available under a was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.The copyright holder for this preprint (which . http://dx.doi.org/10.1101/313734 doi: bioRxiv preprint first posted online May. 8, 2018; hearing loss rules. Three rules remained unchanged, four rules were removed, and the remaining twenty-one rules were specified. Of the specified rules, four had general recommendations, seven were gene/disease considerations, seven had strength-level specifications, and three rules had both gene/disease and strength-level specifications. These rules were further validated and refined using a pilot set of 51 variants assessed by curators.These hearing loss-specific ACMG/AMP rules will help standardize variant interpretation, ultimately leading to better care for individuals with hearing loss.
Nonsense-mediated messenger RNA (mRNA) decay (NMD) is a mRNA degradation pathway that regulates a significant portion of the transcriptome. The expression levels of numerous genes are known to be altered in NMD mutants, but it is not known which of these transcripts is a direct pathway target. Here, we present the first genome-wide analysis of direct NMD targeting in an intact animal. By using rapid reactivation of the NMD pathway in a Drosophila melanogaster NMD mutant and globally monitoring of changes in mRNA expression levels, we can distinguish between primary and secondary effects of NMD on gene expression. Using this procedure, we identified 168 candidate direct NMD targets in vivo. Remarkably, we found that 81% of direct target genes do not show increased expression levels in an NMD mutant, presumably due to feedback regulation. Because most previous studies have used up-regulation of mRNA expression as the only means to identify NMD-regulated transcripts, our results provide new directions for understanding the roles of the NMD pathway in endogenous gene regulation during animal development and physiology. For instance, we show clearly that direct target genes have longer 3′ untranslated regions compared with nontargets, suggesting long 3′ untranslated regions target mRNAs for NMD in vivo. In addition, we investigated the role of NMD in suppressing transcriptional noise and found that although the transposable element Copia is up-regulated in NMD mutants, this effect appears to be indirect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.