Texel sheep are renowned for their exceptional meatiness. To identify the genes underlying this economically important feature, we performed a whole-genome scan in a Romanov x Texel F2 population. We mapped a quantitative trait locus with a major effect on muscle mass to chromosome 2 and subsequently fine-mapped it to a chromosome interval encompassing the myostatin (GDF8) gene. We herein demonstrate that the GDF8 allele of Texel sheep is characterized by a G to A transition in the 3' UTR that creates a target site for mir1 and mir206, microRNAs (miRNAs) that are highly expressed in skeletal muscle. This causes translational inhibition of the myostatin gene and hence contributes to the muscular hypertrophy of Texel sheep. Analysis of SNP databases for humans and mice demonstrates that mutations creating or destroying putative miRNA target sites are abundant and might be important effectors of phenotypic variation.
We have investigated the origin of swine breeds through the joint analysis of mitochondrial, microsatellite, and Y-chromosome polymorphisms in a sample of pigs and wild boars with a worldwide distribution. Genetic differentiation between pigs and wild boars was remarkably weak, likely as a consequence of a sustained gene flow between both populations. The analysis of nuclear markers evidenced the existence of a close genetic relationship between Near Eastern and European wild boars making it difficult to infer their relative contributions to the gene pool of modern European breeds. Moreover, we have shown that European and Far Eastern pig populations have contributed maternal and paternal lineages to the foundation of African and South American breeds. Although West African pigs from Nigeria and Benin exclusively harbored European alleles, Far Eastern and European genetic signatures of similar intensity were detected in swine breeds from Eastern Africa. This region seems to have been a major point of entry of livestock species in the African continent as a result of the Indian Ocean trade. Finally, South American creole breeds had essentially a European ancestry although Asian Y-chromosome and mitochondrial haplotypes were found in a few Nicaraguan pigs. The existence of Spanish and Portuguese commercial routes linking Asia with America might have favored the introduction of Far Eastern breeds into this continent.
Copy number variation (CNV) might be one of the main contributors to phenotypic diversity and evolutionary adaptation in animals and plants, employing a wide variety of mechanisms, such as gene dosage and transcript structure alterations, to modulate organismal plasticity. In the past 4 years, considerable advances have been made in the characterization of the genomic architecture of CNV in domestic species. First, low-resolution CNV maps were produced for cattle, goat, sheep, pig, dog, chicken, duck and turkey, showing that these structural polymorphisms comprise a significant part of these genomes. Furthermore, CNVs have been associated with several pigmentation (white coat in horse, pig and sheep) and morphological (late feathering and pea comb in chicken) traits, as well as with susceptibility to a wide array of diseases and developmental disorders, for example osteopetrosis, anhidrotic ectodermal dysplasia, copper toxicosis, intersexuality, cone degeneration, periodic fever and dermoid sinus, among others. In the future, development of high-resolution tools for CNV detection and typing combined with the implementation of databases integrating CNV, QTL and gene expression data will be essential to identify and measure the impact of this source of structural variation on the many phenotypes that are relevant to animal breeders and veterinary practitioners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.