To reconstruct the evolutionary origin of multicellular animals from their unicellular ancestors, the genome sequences of diverse unicellular relatives are essential. However, only the genome of the choanoflagellate Monosiga brevicollis has been reported to date. Here we completely sequence the genome of the filasterean Capsaspora owczarzaki, the closest known unicellular relative of metazoans besides choanoflagellates. Analyses of this genome alter our understanding of the molecular complexity of metazoans’ unicellular ancestors showing that they had a richer repertoire of proteins involved in cell adhesion and transcriptional regulation than previously inferred only with the choanoflagellate genome. Some of these proteins were secondarily lost in choanoflagellates. In contrast, most intercellular signalling systems controlling development evolved later concomitant with the emergence of the first metazoans. We propose that the acquisition of these metazoan-specific developmental systems and the co-option of pre-existing genes drove the evolutionary transition from unicellular protists to metazoans.
The Opisthokonta are a eukaryotic supergroup divided in two main lineages: animals and related protistan taxa, and fungi and their allies [1, 2]. There is a great diversity of lifestyles and morphologies among unicellular opisthokonts, from free-living phagotrophic flagellated bacterivores and filopodiated amoebas to cell-walled osmotrophic parasites and saprotrophs. However, these characteristics do not group into monophyletic assemblages, suggesting rampant convergent evolution within Opisthokonta. To test this hypothesis, we assembled a new phylogenomic dataset via sequencing 12 new strains of protists. Phylogenetic relationships among opisthokonts revealed independent origins of filopodiated amoebas in two lineages, one related to fungi and the other to animals. Moreover, we observed that specialized osmotrophic lifestyles evolved independently in fungi and protistan relatives of animals, indicating convergent evolution. We therefore analyzed the evolution of two key fungal characters in Opisthokonta, the flagellum and chitin synthases. Comparative analyses of the flagellar toolkit showed a previously unnoticed flagellar apparatus in two close relatives of animals, the filasterean Ministeria vibrans and Corallochytrium limacisporum. This implies that at least four different opisthokont lineages secondarily underwent flagellar simplification. Analysis of the evolutionary history of chitin synthases revealed significant expansions in both animals and fungi, and also in the Ichthyosporea and C. limacisporum, a group of cell-walled animal relatives. This indicates that the last opisthokont common ancestor had a complex toolkit of chitin synthases that was differentially retained in extant lineages. Thus, our data provide evidence for convergent evolution of specialized lifestyles in close relatives of animals and fungi from a generalist ancestor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.