Bright reflections are observed within the upper 1,000 m of the water column along a seismic reflection profile that traverses the northern margin of the Gulf of Mexico. Independent hydrographic calibration demonstrates that these reflections are primarily caused by temperature changes associated with different water masses that are entrained into the Gulf along the Loop Current. The internal wave field is analyzed by automatically tracking 1,171 reflections, each of which is greater than 2 km in length. Power spectra of the horizontal gradient of isopycnal displacement, ϕξx, are calculated from these tracked reflections. At low horizontal wave numbers ( kx<10−2 cpm), ϕξx∝kx−0.2±0.6, in agreement with hydrographic observations of the internal wave field. The turbulent spectral subrange is rarely observed. Diapycnal diffusivity, K, is estimated from the observed internal wave spectral subrange of each tracked reflection using a fine‐scale parametrization of turbulent mixing. Calculated values of K vary between 10−8 and 10−4 m2 s−1 with a mean value of K∼4×10−6 m2 s−1. The spatial distribution of turbulent mixing shows that K∼10−7 m2 s−1 away from the shelf edge in the upper 300 m where stratification is strong. Mixing is enhanced by up to 4 orders of magnitude adjacent to the shoaling bathymetry of the continental slope. This overall pattern matches that determined by analyzing nearby suites of CTD casts. However, the range of values recovered by spectral analysis of the seismic image is greater as a consequence of significantly better horizontal resolution.
We describe and analyze the results of a three‐dimensional seismic (i.e., acoustic) reflection survey from the Faroe‐Shetland Channel that is calibrated with near‐coincident hydrographic and satellite observations. 54 vertical seismic transects were acquired over a period of 25 days. On each transect, a 250‐ to 400‐m‐thick band of reflections is observed within the water column. Hydrographic measurements demonstrate that this reflective band is caused by temperature variations within the pycnocline that separates warm, near‐surface waters of Atlantic origin from cold, deep waters that flow southward from the Nordic Seas. Tilting of reflective surfaces records geostrophic shear between these near‐surface and deep waters. Measurements of temporal changes of pycnoclinic depth and of reflection tilt are used to infer the existence of an anticyclonic vortex that advects northeastward. Comparison with satellite measurements of sea‐surface temperature and height suggests that this vortex is caused by meandering of the Continental Slope Current. A model of a Gaussian vortex is used to match seismic and satellite observations. This putative vortex grows to have a core radius of 40–50 km. It has a maximum azimuthal velocity of 0.3–0.4 m s−1 and translates at 0.01–0.1 m s−1. Within the pycnocline, diapycnal diffusivity, K, is estimated by analyzing the turbulent spectral subrange of tracked reflections. K varies between 10−5.7 m2 s−1and 10−5.0 m2 s−1 in a pattern that is broadly consistent with translation of the vortex. Our integrated study demonstrates the ability of time‐lapse seismic reflection surveys to dynamically resolve the effects that mesoscale activity has upon deep thermohaline structure on scales from meters to hundreds of kilometers.
The southwest Atlantic gyre connects several distinct water masses, which means that this oceanic region is characterized by a complex frontal system and enhanced water mass modification. Despite its significance, the distribution and variability of vertical mixing rates have yet to be determined for this system. Specifically, potential conditioning of mixing rates by frontal structures, in this location and elsewhere, is poorly understood. Here, we analyze vertical seismic (i.e., acoustic) sections from a three-dimensional survey that straddles a major front along the northern portion of the Brazil-Falkland Confluence. Hydrographic analyses constrain the structure and properties of water masses. By spectrally analyzing seismic reflectivity, we calculate spatial and temporal distributions of the dissipation rate of turbulent kinetic energy, ε, of diapycnal mixing rate, K, and of vertical diffusive heat flux, FH. We show that estimates of ε, K, and FH are elevated compared to regional and global mean values. Notably, cross-sectional mean estimates vary little over a 6 week period whilst smaller scale thermohaline structures appear to have a spatially localized effect upon ε, K, and FH. In contrast, a mesoscale front modifies ε and K to a depth of 1 km, across a region of O(100) km. This front clearly enhances mixing rates, both adjacent to its surface outcrop and beneath the mixed layer, whilst also locally suppressing ε and K to a depth of 1 km. As a result, estimates of FH increase by a factor of two in the vicinity of the surface outcrop of the front. Our results yield estimates of ε, K and FH that can be attributed to identifiable thermohaline structures and they show that fronts can play a significant role in water mass modification to depths of 1 km.
Seismic reflection profiling of thermohaline structure has the potential to transform our understanding of oceanic mixing and circulation. This profiling, which is known as seismic oceanography, yields acoustic images that extend from the sea surface to the sea bed and which span horizontal distances of hundreds of kilometers. Changes in temperature and salinity are detected in two, and sometimes three, dimensions at spatial resolutions of ~O(10) m. Due to its unique combination of extensive coverage and high spatial resolution, seismic oceanography is ideally placed to characterize the processes that sustain oceanic circulation by transferring energy between basin-scale currents and turbulent flow. To date, more than one hundred research papers have exploited seismic oceanographic data to gain insight into phenomena as varied as eddy formation, internal waves, and turbulent mixing. However, despite its promise, seismic oceanography suffers from three practical disadvantages that have slowed its development into a widely accepted tool. First, acquisition of high-quality data is expensive and logistically challenging. Second, it has proven difficult to obtain independent observational constraints that can be used to benchmark seismic oceanographic results. Third, computational workflows have not been standardized and made widely available. In addition to these practical challenges, the field has struggled to identify pressing scientific questions that it can systematically address. It thus remains a curiosity to many oceanographers. We suggest ways in which the practical challenges can be addressed through development of shared resources, and outline how these resources can be used to tackle important problems in physical oceanography. With this collaborative approach, seismic oceanography can become a key member of the next generation of methods for observing the ocean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.