We propose a novel recursive partitioning method for identifying subgroups of subjects with enhanced treatment effects based on a differential effect search algorithm. The idea is to build a collection of subgroups by recursively partitioning a database into two subgroups at each parent group, such that the treatment effect within one of the two subgroups is maximized compared with the other subgroup. The process of data splitting continues until a predefined stopping condition has been satisfied. The method is similar to 'interaction tree' approaches that allow incorporation of a treatment-by-split interaction in the splitting criterion. However, unlike other tree-based methods, this method searches only within specific regions of the covariate space and generates multiple subgroups of potential interest. We develop this method and provide guidance on key topics of interest that include generating multiple promising subgroups using different splitting criteria, choosing optimal values of complexity parameters via cross-validation, and addressing Type I error rate inflation inherent in data mining applications using a resampling-based method. We evaluate the operating characteristics of the procedure using a simulation study and illustrate the method with a clinical trial example.
Inadequate selection of the dose to bring forward in confirmatory trials has been identified as one of the key drivers of the decreasing success rates observed in drug development programs across the pharmaceutical industry. In recognition of this problem, the Pharmaceutical Research and Manufacturers of America (PhRMA), formed a working group to evaluate and develop alternative approaches to dose finding, including adaptive dose-ranging designs. This paper summarizes the work of the group, including the results and conclusions of a comprehensive simulation study, and puts forward recommendations on how to improve dose ranging in clinical development, including, but not limited to, the use of adaptive dose-ranging methods.
A general multistage (stepwise) procedure is proposed for dealing with arbitrary gatekeeping problems including parallel and serial gatekeeping. The procedure is very simple to implement since it does not require the application of the closed testing principle and the consequent need to test all nonempty intersections of hypotheses. It is based on the idea of carrying forward the Type I error rate for any rejected hypotheses to test hypotheses in the next ordered family. This requires the use of a so-called separable multiple test procedure (MTP) in the earlier family. The Bonferroni MTP is separable, but other standard MTPs such as Holm, Hochberg, Fallback and Dunnett are not. Their truncated versions are proposed which are separable and more powerful than the Bonferroni MTP. The proposed procedure is illustrated by a clinical trial example.
Important objectives in the development of stratified medicines include the identification and confirmation of subgroups of patients with a beneficial treatment effect and a positive benefit-risk balance. We report the results of a literature review on methodological approaches to the design and analysis of clinical trials investigating a potential heterogeneity of treatment effects across subgroups. The identified approaches are classified based on certain characteristics of the proposed trial designs and analysis methods. We distinguish between exploratory and confirmatory subgroup analysis, frequentist, Bayesian and decision-theoretic approaches and, last, fixed-sample, group-sequential, and adaptive designs and illustrate the available trial designs and analysis strategies with published case studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.