Pedestrian movement direction recognition is an important factor in autonomous driver assistance and security surveillance systems. Pedestrians are the most crucial and fragile moving objects in streets, roads and events where thousands of people may gather on a regular basis. People flow analysis on zebra crossings and in shopping centres or events such as demonstrations are a key element to improve safety and to enable autonomous cars to drive in real life environments. This paper focuses on deep learning techniques such as Convolutional Neural Networks (CNN) to achieve a reliable detection of pedestrians moving in a particular direction. We propose a CNN-based technique that leverages current pedestrian detection techniques (HOG-linSVM) to generate a sum of subtracted frames (flow estimation around the detected pedestrian), which are used as an input for the proposed modified versions of various state-ofthe-art CNN networks such as AlexNet, GoogleNet and ResNet. Moreover, we have also created a new dataset for this purpose, and analysed the importance of training in a known dataset for the neural networks to achieve reliable results.
In recent years, we have seen a large growth in the number of applications which use deep learning-based object detectors. Autonomous driving assistance systems (ADAS) are one of the areas where they have the most impact. This work presents a novel study evaluating a state-of-the-art technique for urban object detection and localization. In particular, we investigated the performance of the Faster R-CNN method to detect and localize urban objects in a variety of outdoor urban videos involving pedestrians, cars, bicycles and other objects moving in the scene (urban driving). We propose a new dataset that is used for benchmarking the accuracy of a real-time object detector (Faster R-CNN). Part of the data was collected using an HD camera mounted on a vehicle. Furthermore, some of the data is weakly annotated so it can be used for testing weakly supervised learning techniques. There already exist urban object datasets, but none of them include all the essential urban objects. We carried out extensive experiments demonstrating the effectiveness of the baseline approach. Additionally, we propose an R-CNN plus tracking technique to accelerate the process of real-time urban object detection.
In recent years, we have seen a large growth in the number of applications which use deep learning-based object detectors. Autonomous driving assistance systems (ADAS) are one of the areas where they have the most impact. This work presents a novel study evaluating a state-of-the-art technique for urban object detection and localization. In particular, we investigated the performance of the Faster R-CNN method to detect and localize urban objects in a variety of outdoor urban videos involving pedestrians, cars, bicycles and other objects moving in the scene (urban driving). We propose a new dataset that is used for benchmarking the accuracy of a real-time object detector (Faster R-CNN). Part of the data was collected using an HD camera mounted on a vehicle. Furthermore, some of the data is weakly annotated so it can be used for testing weakly supervised learning techniques. There already exist urban object datasets, but none of them include all the essential urban objects. We carried out extensive experiments demonstrating the effectiveness of the baseline approach. Additionally, we propose an R-CNN plus tracking technique to accelerate the process of real-time urban object detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.