Occupant feedback enables building managers to improve occupants’ health, comfort, and satisfaction. However, acquiring continuous occupant feedback and integrating this feedback with other building information is challenging. This paper presents a scalable method to acquire continuous occupant feedback and directly integrate this with other building information. Semantic web technologies were applied to solve data interoperability issues. The Occupant Feedback Ontology was developed to describe feedback semantically. Next to this, a smartwatch app – Mintal – was developed to acquire continuous feedback on indoor environmental quality. The app gathers location, medical information, and answers on short micro surveys. Mintal applied the Occupant Feedback Ontology to directly integrate the feedback with linked building data. A case study was performed to evaluate this method. A semantic digital twin was created by integrating linked building data, sensor data, and occupant feedback. Results from SPARQL queries gave more insight into an occupant’s perceived comfort levels in the Open Flat. The case study shows how integrating feedback with building information allows for more occupant-centric decision support tools. The approach presented in this paper can be used in a wide range of use cases, both within and without the architecture, building, and construction domain.
Indoor environmental quality (IEQ) affects occupants’ satisfaction, health, productivity, comfort, and well-being. IoT developments enable better monitoring of IEQ parameters; however, integrating the various types of heterogeneous data from both the IoT and BIM domains is cumbersome and capital intensive, and therefore, limits the potential of smart buildings. Semantic web technologies can reduce heterogeneity issues, which is necessary to facilitate complex IEQ models. An ontology integrating data related to a building’s topology and its static and dynamic properties is still lacking. The outline of this research is twofold. First, a systematic literature review was conducted to find state-of-the-art semantic web technologies related to building topology, static properties, and dynamic properties from the IoT and BIM domains. By graphically reviewing various ontologies, their valuable patterns, commonalities, and best practices were revealed. Secondly, those results were used to develop a new ontology that integrates topological building information with static and dynamic properties. This Building Performance Ontology (BOP) provides a generic upper-level description of properties and two lower-level ontologies representing observations and actuation. The ontology results in intuitive queries and is both horizontally and vertically extensible. Multiple levels of detail are introduced to ensure practical applicability and efficient patterns based on the data modeler’s needs. BOP opens up a new range of research opportunities in the IEQ domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.