Over the past several years there has been an increasing interest in the development of miniature air vehicles (MAVs) with flapping wings. To allow these MAVs to adjust to changes in wind direction and to maximize their efficiency, it is desirable to monitor the deformation of the wing during flight. This paper presents a step in this direction, demonstrating the measurement of strain on the surface of the wing using minimally invasive compliant piezoresistive sensors. The strain gauges consisted of latex mixed with electrically conducting exfoliated graphite, and they were applied by spray coating. To calibrate the gauges, both static and dynamic testing up to 10 Hz were performed using cantilever structures. In tension the static sensitivity was a linear 0.4 Ω με−1 and the gauge factor was 28; in compression, the gauge factor was −5. Although sensitivities in tension and compression differed by a factor of almost six, this was not reflected in the dynamic data, which followed the strain reversibly with little distortion. There was no attenuation with frequency, indicating a sufficiently small time constant for this application. The gauges were thin, compliant, and light enough to measure, without interference, deformations due to shape changes of the flexible wing associated with generating lift and thrust. During flapping the resistance closely tracked the generated thrust, measured on a test stand, with both signals tracing figure-8 loops as a function of wing position throughout each cycle.
This work investigates the fabrication of hydrogel based lipid bilayers arrays using micro fabrication technologies that enable high precision in controlling the cell-scale droplets. Arrays of hydrogels that support curved aqueous lenses are deposited on two parallel substrates using lithography techniques on top of a network of Ag/AgCl electrodes. The first step in the fabrication process is to deposit silver electrodes using silver paint through a mask, a layer of silver chloride is then formed around the silver channels using another mask with the desired geometry. The hydrogel arrays are then achieved by exposing a thin film of photocrosslinkable hydrogel to UV light through a mask. Hydrogel arrays are fabricated using this technique, which is represents a relatively accurate and inexpensive method. The hydrogel structures can host a thin aqueous curved lenses containing phospholipids . Bilayer arrays can be formed by using a technique similar to the regulated attachment method, where mechanical force is used to bring adjacent aqueous lenses in contact.
In this work, we present a process for the fabrication of meso-scale hydrogel-based lipid bilayer arrays. The hydrogels support lipid monolayers at an oil-water interface, and when brought together, form stable bilayers. The substrates are formed using 3D printed molds and include built-in, customizable circuits patterned with silver paint. The system can be adapted to varying network sizes and circuit designs, and new arrays are fabricated quickly and inexpensively using common laboratory techniques. An enclosed 3×3 array with 3 mm spacing between neighboring hydrogels and electrodes to individually examine each bilayer has been created using this method. An alternative test setup was also developed to better observe the formation of bilayers in a small array. Using this setup, two bilayers were formed simultaneously, demonstrating the feasibility of this type of system and providing valuable information for expanding and improving the enclosed network. Many of the design concepts presented here can be adapted for use at smaller scales using microfabrication techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.