Low-income countries are persistently suffering from last-mile logistics issues in healthcare supply chains. Therefore, it is high time to explore technological applications to overcome such inadequacies. The faster speed, low maintenance cost, and absence of road dependency in unmanned aerial vehicles (UAV) have popularized them as an alternative to road delivery. Hence, it is suggested as a solution to overcome the persisting distribution inefficiencies in healthcare logistics of low-income countries. According to the case study analysis conducted on the Sri Lankan vaccine cold chain, incorporating UAVs increases truck-space utilization and reduces the time consumed, cost incurred, and carbon dioxide emission in a delivery round. Moreover, the most suitable way to cover the initial setup cost of an unmanned aerial system (UAS) is by receiving aid from international donors. The capital cost also can be covered by government investments or via service outsourcing only if the number of flights per year is increased. Moreover, a homogenous (i.e., only UAV) solution was revealed to be more beneficial than a heterogeneous (i.e., truck and UAV) solution. However, due to the lack of technology literacy and willingness to change in low-income countries, it is recommended to initially execute a heterogeneous solution and expand to a homogeneous plan in the future years. However, it was evident that for a mixed-fleet solution to be advantageous, drone characteristics play a vital role. Hence, a UAV with specifications ideal for the use case must be utilized to garner the maximum benefits. Nevertheless, it was apparent that with the right implementation plan, UAVs possess the potential to overcome the shortcomings in the healthcare logistics of low-income countries.
Unmanned aerial vehicles (UAVs) have been used extensively for search and rescue operations, surveillance, disaster monitoring, attacking terrorists, etc. due to their growing advantages of low-cost, high maneuverability, and easy deployability. This study proposes a mixed-integer programming model under a multi-objective optimization framework to design trajectories that enable a set of UAVs to execute surveillance tasks. The first objective maximizes the cumulative probability of target detection to aim for mission planning success. The second objective ensures minimization of cumulative path length to provide a higher resource utilization goal. A two-step variable neighborhood search (VNS) algorithm is offered, which addresses the combinatorial optimization issue for determining the near-optimal sequence for cell visiting to reach the target. Numerical experiments and simulation results are evaluated in numerous benchmark instances. Results demonstrate that the proposed approach can favorably support practical deployability purposes.
The multi-satellite image acquisition scheduling problem is traditionally seen as a complex optimization problem containing a generic objective function that represents the priority structure of the satellite operator. However, the majority of literature neglect the collective and contemporary effect of factors associated with the operational goal in the objective function, i.e., uncertainty in cloud cover, customer priority, image quality criteria, etc. Consequently, the focus of the article is to integrate a real-time scoring approach of imaging attempts that considers these aspects. This is accomplished in a multi-satellite planning environment, through the utilization of the multi-criteria decision making (MCDM) models, Elimination and Choice Expressing Reality (ELECTRE-III) and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), and the formulation of a binary linear programming model. The two scoring approaches belong to different model classes of MCDM, respectively an outranking approach and a distance to ideal point approach, and they are compared with a naive approach. Numerical experiments are conducted to validate the models and illustrate the importance of criteria neglected in previous studies. The results demonstrate the customized behaviour allowed by MCDM methods, especially the ELECTRE-III approach.
Search and Rescue (SAR) missions aim to search and provide first aid to persons in distress or danger. Due to the urgency of these situations, it is important to possess a system able to take fast action and effectively and efficiently utilise the available resources to conduct the mission. In addition, the potential complexity of the search such as the ruggedness of terrain or large size of the search region should be considered. Such issues can be tackled by using Unmanned Aerial Vehicles (UAVs) equipped with optical sensors. This can ensure the efficiency in terms of speed, coverage and flexibility required to conduct this type of time-sensitive missions. This paper centres on designing a fast solution approach for planning UAV-assisted SAR missions. The challenge is to cover an area where targets (people in distress after a hurricane or earthquake, lost vessels in sea, missing persons in mountainous area, etc.) can be potentially found with a variable likelihood. The search area is modelled using a scoring map to support the choice of the search sub-areas, where the scores represent the likelihood of finding a target. The goal of this paper is to propose a heuristic approach to automate the search process using scarce heterogeneous resources in the most efficient manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.