The suprachiasmatic nucleus (SCN) controls the circadian rhythm of physiological and behavioural processes in mammals. Here we show that prokineticin 2 (PK2), a cysteine-rich secreted protein, functions as an output molecule from the SCN circadian clock. PK2 messenger RNA is rhythmically expressed in the SCN, and the phase of PK2 rhythm is responsive to light entrainment. Molecular and genetic studies have revealed that PK2 is a gene that is controlled by a circadian clock (clock-controlled). Receptor for PK2 (PKR2) is abundantly expressed in major target nuclei of the SCN output pathway. Inhibition of nocturnal locomotor activity in rats by intracerebroventricular delivery of recombinant PK2 during subjective night, when the endogenous PK2 mRNA level is low, further supports the hypothesis that PK2 is an output molecule that transmits behavioural circadian rhythm. The high expression of PKR2 mRNA within the SCN and the positive feedback of PK2 on its own transcription through activation of PKR2 suggest that PK2 may also function locally within the SCN to synchronize output.
Neurogenesis persists in the olfactory bulb (OB) of the adult mammalian brain. New interneurons are continually added to the OB from the subventricular zone (SVZ) via the rostral migratory stream (RMS). Here we show that secreted prokineticin 2 (PK2) functions as a chemoattractant for SVZ-derived neuronal progenitors. Within the OB, PK2 may also act as a detachment signal for chain-migrating progenitors arriving from the RMS. PK2 deficiency in mice leads to a marked reduction in OB size, loss of normal OB architecture, and the accumulation of neuronal progenitors in the RMS. These findings define an essential role for G protein-coupled PK2 signaling in postnatal and adult OB neurogenesis.
Osteosarcoma is a highly aggressive cancer for which treatment has remained essentially unchanged for more than 30 years. Osteosarcoma is characterized by widespread and recurrent somatic copy-number alterations (SCNA) and structural rearrangements. In contrast, few recurrent point mutations in protein-coding genes have been identifi ed, suggesting that genes within SCNAs are key oncogenic drivers in this disease. SCNAs and structural rearrangements are highly heterogeneous across osteosarcoma cases, suggesting the need for a genome-informed approach to targeted therapy. To identify patient-specifi c candidate drivers, we used a simple heuristic based on degree and rank order of copy-number amplifi cation (identifi ed by whole-genome sequencing) and changes in gene expression as identifi ed by RNA sequencing. Using patient-derived tumor xenografts, we demonstrate that targeting of patient-specifi c SCNAs leads to signifi cant decrease in tumor burden, providing a road map for genome-informed treatment of osteosarcoma. SIGNIFICANCE: Osteosarcoma is treated with a chemotherapy regimen established 30 years ago. Although osteosarcoma is genomically complex, we hypothesized that tumor-specifi c dependencies could be identifi ed within SCNAs. Using patient-derived tumor xenografts, we found a high degree of response for "genome-matched" therapies, demonstrating the utility of a targeted genome-informed approach.
Clinical and research efforts have focused on promoting functional recovery after stroke. Brain stimulation strategies are particularly promising because they allow direct manipulation of the target area's excitability. However, elucidating the cell type and mechanisms mediating recovery has been difficult because existing stimulation techniques nonspecifically target all cell types near the stimulated site. To circumvent these barriers, we used optogenetics to selectively activate neurons that express channelrhodopsin 2 and demonstrated that selective neuronal stimulations in the ipsilesional primary motor cortex (iM1) can promote functional recovery. Stroke mice that received repeated neuronal stimulations exhibited significant improvement in cerebral blood flow and the neurovascular coupling response, as well as increased expression of activity-dependent neurotrophins in the contralesional cortex, including brain-derived neurotrophic factor, nerve growth factor, and neurotrophin 3. Western analysis also indicated that stimulated mice exhibited a significant increase in the expression of a plasticity marker growth-associated protein 43. Moreover, iM1 neuronal stimulations promoted functional recovery, as stimulated stroke mice showed faster weight gain and performed significantly better in sensory-motor behavior tests. Interestingly, stimulations in normal nonstroke mice did not alter motor behavior or neurotrophin expression, suggesting that the prorecovery effect of selective neuronal stimulations is dependent on the poststroke environment. These results demonstrate that stimulation of neurons in the stroke hemisphere is sufficient to promote recovery. stroke recovery | channelrhodopsin
These findings provide evidence that adolescent brain is differentially sensitive to both the acute and repeated effects of nicotine relative to adult brain. Furthermore, there are significant differences in nicotine sensitivity between early and late phases of adolescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.