Cells need to translocate proteins into and across hydrophobic membranes in order to interact with the extracellular environment. Although a subset of proteins are thought to spontaneously insert into lipid bilayers, translocation of most transported proteins requires additional cellular components. Such components catalyze efficient lateral transport into or across cellular membranes in prokaryotes and eukaryotes. These include, among others, the conserved YidC/Oxa1/Alb3 proteins as well as components of the Sec and the Tat pathways. Our current knowledge of the function and distribution of these components and their corresponding pathways in organisms of the three domains of life is reviewed. On the basis of this information, the evolution of protein translocation is discussed.
We have shown previously that flow-adapted endothelial cells respond to cessation of flow with cell membrane depolarization and increased production of reactive oxygen species, resulting in activation of transcription factors and increased DNA synthesis. This study utilized flow cytometry to evaluate cellular proliferation with ischemia and to determine the role of reactive oxygen species and apoptosis. PKH26-labeled rat pulmonary microvascular endothelial cells were seeded in an artificial capillary system and subjected to flow at 5 dynes/cm(2) for 96 h or for 72 h followed by 24 h of simulated "ischemia." Ischemia resulted in a 2.5-fold increase in the cellular proliferation index. Cell-cycle analysis showed G0/G1 arrest and decreased S plus G2/M during flow adaptation, whereas ischemia resulted in a three-fold increase of cells in S plus G2/M phases. Apoptotic cells as detected by TUNEL and annexin V binding assays were ~5% of total cells with no differences between static, flow-adapted, and "ischemic" groups. Reactive oxygen species production during a 1-h period following onset of ischemia was confirmed by oxidation of the fluorophore, dichlorofluorescein, and was inhibited by cromakalim, a K(ATP) channel agonist, or diphenyleneiodonium, a flavoprotein inhibitor. Cromakalim and diphenyleneiodonium also markedly inhibited cell proliferation in the flow-adapted ischemic cells, but had no effect on subconfluent cells cultured under static conditions. These results indicate reactive oxygen species-dependent endothelial cell proliferation in flow-adapted microvascular endothelial cells as a response to ischemia and indicate that this response is not a consequence of apoptosis.
Regulated exocytosis of dense core secretory granules releases biologically active proteins in a stimulusdependent fashion. The packaging of the cargo within newly forming granules involves a transition: soluble polypeptides condense to form water-insoluble aggregates that constitute the granule cores. Following exocytosis, the cores generally disassemble to diffuse in the cell environment. The ciliates Tetrahymena thermophila and Paramecium tetraurelia have been advanced as genetically manipulatable systems for studying exocytosis via dense core granules. However, all of the known granule proteins in these organisms condense to form the architectural units of lattices that are insoluble both before and after exocytosis. Using an approach designed to detect new granule proteins, we have now identified Igr1p (induced during granule regeneration). By structural criteria, it is unrelated to the previously characterized lattice-forming proteins. It is distinct in that it is capable of dissociating from the insoluble lattice following secretion and therefore represents the first diffusible protein identified in ciliate granules.
Stimulation of regulated secretory cells promotes protein release via the fusion of cytoplasmic storage vesicles with the plasma membrane. In Tetrahymena thermophila, brief exposure to secretagogue results in synchronous fusion of the entire set of docked dense-core granules with the plasma membrane. We show that stimulation is followed by rapid new dense-core granule synthesis involving gene induction. Two genes encoding granule matrix proteins, GRL1 and GRL4, are shown to undergo induction following stimulation, resulting in Ϸ10-fold message accumulation within 1 h. The mechanism of induction involves transcriptional regulation, and the upstream region of GRL1 functions in vivo as an inducible promoter in a heterologous reporter construct using the gene encoding green f luorescent protein. Taking advantage of the characterized exocytosis (exo ؊ ) mutants available in this system, we asked whether the signals for regranulation were generated directly by the initial stimulation, or whether downstream events were required for transcription activation. Three mutants, with defects at three distinct stages in the regulated secretory pathway, failed to show induction of GRL1 and GRL4 after exposure to secretagogue. These results argue that regranulation depends upon signals generated by the final steps in exocytosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.