Overexpression of oncoproteins is a major cause of treatment failure using current chemotherapeutic drugs. Drug‐induced degradation of oncoproteins is feasible and can improve clinical outcomes in diverse types of cancers. Mortalin‐2 (mot‐2) is a dominant oncoprotein in several tumors, including colorectal cancer (CRC). In addition to inactivating the p53 tumor suppressor protein, mot‐2 enhances tumor cell invasion and migration. Thus, mot‐2 is considered a potential therapeutic target in several cancer types. The current study investigated the biological role of a ubiquitin‐like protein called UBXN2A in the regulation of mot‐2 turnover. An orthogonal ubiquitin transfer technology followed by immunoprecipitation, in vitro ubiquitination, and Magnetic Beads TUBE2 pull‐down experiments revealed that UBXN2A promotes carboxyl terminus of the HSP70‐interacting protein (CHIP)‐dependent ubiquitination of mot‐2. We subsequently showed that UBXN2A increases proteasomal degradation of mot‐2. A subcellular compartmentalization experiment revealed that induced UBXN2A decreases the level of mot‐2 and its chaperone partner, HSP60. Pharmacological upregulation of UBXN2A using a small molecule, veratridine (VTD), decreases the level of mot‐2 in cancer cells. Consistent with the in vitro results, UBXN2A+/− mice exhibited selective elevation of mot‐2 in colon tissues. An in vitro Anti‐K48 TUBE isolation approach showed that recombinant UBXN2A enhances proteasomal degradation of mot‐2 in mouse colon tissues. Finally, we observed enhanced association of CHIP with the UBXN2A‐mot‐2 complex in tumors in an azoxymethane/dextran sulfate sodium‐induced mouse CRC model. The existence of a multiprotein complex containing UBXN2A, CHIP, and mot‐2 suggests a synergistic tumor suppressor activity of UBXN2A and CHIP in mot‐2‐enriched tumors. This finding validates the UBXN2A‐CHIP axis as a novel and potential therapeutic target in CRC.
Repetitive activation of non-nociceptive afferents is known to attenuate nociceptive signaling. However, the functional details of how this modulatory process operates are not understood and this has been a barrier in using such stimuli to effectively treat chronic pain. The present study tests the hypothesis that the ability of repeated non-nociceptive stimuli to reduce nociception is a form of generalized habituation from the non-nociceptive stimulus-response pathway to the nociceptive pathway. Habituation training, using non-nociceptive mechanosensory stimuli, did reduce responses to nociceptive thermal stimulation. This generalization of habituation to nociceptive stimuli required endocannabinoid-mediated neuromodulation, although disrupting of endocannabinoid signaling did not affect "direct" habituation of to the non-nociceptive stimulus. Surprisingly, the reduced response to nociceptive stimuli following habituation training was very long-lasting (3-8 days). This long-term habituation required endocannabinoid signaling during the training/acquisition phase, but endocannabinoids were not required for post-training retention phase. The implications of these results are that applying principles of habituation learning could potentially improve anti-nociceptive therapies utilizing repeated non-nociceptive stimulation such as transcutaneous nerve stimulation (TENS), spinal cord stimulation (SCS), or electro-acupuncture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.