Soil acidity may severely reduce crop production. Biochar (BC) may increase soil pH and cation exchange capacity (CEC) but reported effects differ substantially. In a systematic approach, using a standardized protocol on a uniquely large number set of 31 acidic soils, we quantified the effect of increasing amounts (0-30%; weight: weight) of three types of field-produced BCs (from cacao (Theobroma cacao. L.) shell, oil palm (Elaeis guineensis. Jacq.) shell and rice (Oryza sativa. L.) husk) on soil pH and CEC. Soils were sampled from croplands at Java, Sumatra and Kalimantan, Indonesia. All BCs caused a significant increase in mean soil pH with a stronger response and a greater maximum increase for the cacao shell BC addition, due to a greater acid neutralizing capacity (ANC) and larger amounts of extractable base cations. At 1% BC addition, corresponding to about 30 tons ha −1 , the estimated increase in soil pH from the initial mean pH of 4.7 was about 0.5 units for the cacao shell BC, whereas this was only 0.05 and 0.04 units for the oil palm shell and rice husk BC, respectively. Besides depending on BC type, the increase in soil pH upon the addition of each of the three BCs was mainly dependent on soil CEC (low CEC resulting in stronger pH increase), and to a lesser extent on initial soil pH (higher initial pH resulting in stronger pH increase). Addition of BC also increased the amount of exchangeable base cations (cacao shell ) oil palm and rice husk) and CEC. Through this systematic screening of the effect of BC on pH and CEC of acidic soils, we show that a small addition of BC, in particular if made of cacao shell, to acidic agricultural soils increases soil pH and CEC. However, the response is highly dependent on the type, quality and amount of the added BC as well as on intrinsic soil properties, mainly CEC.
Most of the thousands of substances and species that risk assessment has to deal with are not investigated empirically because of financial, practical, and ethical constraints. To facilitate extrapolation, we have developed a model for concentration kinetics of inorganic substances as a function of the exposure concentration of the chemical and the weight and trophic level of the species. The ecological parameters and the resistances that substances encounter during diffusion in water layers were obtained from previous reviews. The other chemical parameters (the resistances for permeation of lipid layers) were calibrated in the present study on 1,062 rate constants for absorption from water, for assimilation from food, and for elimination. Data on all elements and species were collected, but most applied to aquatic species, in particular mollusks and fish, and to transition metals, in particular group IIB (Zn, Cd, Hg). Their ratio was validated on 92 regressions and nine geometric averages, representing thousands of (near-)equilibrium accumulation ratios from laboratory and field studies. Rate constants for absorption and elimination decreased with species weight at an exponent of about -0.25, known from ecological allometry. On average, uptake-rate constants decreased with about the reciprocal square root of the exposure concentration. About 71 and 30% of the variation in absorption and elimination was explained by the model, respectively. The efficiency for assimilation of elements from food appeared to be determined mainly by the food digestibility and the distribution over egested and digested fractions. (Near-)equilibrium accumulation and magnification ratios also decreased with the reciprocal square root of the exposure concentration. The level of the organism-solids concentrations ratios roughly varied between one and two orders of magnitude, depending on the number of elements and species groups investigated. Metal concentrations did not increase at higher trophic levels, with the exception of (methyl-)mercury. Organism-solids concentration ratios for terrestrial species tended to be somewhat lower than those for their aquatic equivalents. Food web accumulation, expressed as organism-organic solids and organism-food concentrations ratios, can therefore be only partly explained by ecological variables. The model is believed to facilitate various types of scientific interpretation as well as environmental risk assessment.
Differences in bioavailability of hydrophobic organic compounds (HOC) to benthic deposit feeders have been related to differences in sediment-HOC contact time and sequestration (formation of slowly desorbing fractions) status. As a consequence, it was postulated that contact time and/or sequestration should be incorporated into risk assessment. In the present study, we investigated the effect of contact time on the bioavailability and sequestration of different classes of HOC. For this purpose, we simultaneously measured the steady-state accumulation into benthic oligochaetes (Tubificidae) and the distribution over rapidly and slowly desorbing fractions in laboratory-contaminated sediment at different contact times. The decrease in rapidly desorbing fractions (Frap) of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and 2,2-bis (4-chlorophenyl)-1,1-dichloroethylene (p,p'-DDE) after a contact time of 959 d did not exceed a factor of 1.2. Similarly, the reduction in bioavailability was a factor of 2.3 at maximum, indicating that long contact times do not necessarily result in pronounced bioavailability reduction. For chlorobenzenes, the bioavailability was reduced with a factor of 5 to 18. This decrease corresponded with a pronounced reduction in Frap, which was attributed to losses of rapidly desorbing compounds. Over 75% of the variation in biota-to-sediment accumulation factors (BSAFs) of the PAHs and chlorobenzenes at the three contact times could be explained by differences in Frap. The present study provides evidence of a relationship between sequestration status and bioavailability of HOC to benthic deposit feeders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.