Background: Survival rates for highly invasive bladder cancer (BC) patients have been very low, with a 5-year survival rate of 6%. Accurate prediction of tumor progression and survival is important for diagnosis and therapeutic decisions for BC patients. Our study aims to develop an autophagy-related-gene (ARG) signature that helps to predict the survival of BC patients. Methods: RNA-seq data of 403 BC patients were retrieved from The Cancer Genome Atlas Urothelial Bladder Carcinoma (TCGA-BLCA) database. Univariate Cox regression analysis was performed to identify overall survival (OS)-related ARGs. The Lasso Cox regression model was applied to establish an ARG signature in the TCGA training cohort (N = 203). The performance of the 11-gene ARG signature was further evaluated in a training cohort and an independent validation cohort (N = 200) using Kaplan-Meier OS curve analysis, receiver operating characteristic (ROC) analysis, as well as univariate and multivariate Cox regression analysis. Results: Our study identified an 11-gene ARG signature that is significantly associated with OS, including APOL1, ATG4B, BAG1, CASP3, DRAM1, ITGA3, KLHL24, P4HB, PRKCD, ULK2, and WDR45. The ARGs-derived high-risk bladder cancer patients exhibited significantly poor OS in both training and validation cohorts. The prognostic model showed good predictive efficacy, with the area under the ROC curve (AUCs) for 1-year, 3-year, and 5-year overall survival of 0.702 (0.695), 0.744 (0.640), and 0.794 (0.658) in the training and validation cohorts, respectively. A prognostic nomogram, which included the ARGs-derived risk factor, age and stage for eventual clinical translation, was established. Conclusion: We identified a novel ARG signature for risk-stratification and robust prediction of overall survival for BC patients.
Nickel is a naturally occurring element found in the Earth’s crust and an International Agency for Research on Cancer (IARC)-classified human carcinogen. While low levels found in the natural environment pose a minor concern, the extensive use of nickel in industrial settings such as in the production of stainless steel and various alloys complicate human exposure and health effects. Notably, interactions with nickel macromolecules, primarily through inhalation, have been demonstrated to promote lung cancer. Mechanisms of nickel-carcinogenesis range from oxidative stress, DNA damage, and hypoxia-inducible pathways to epigenetic mechanisms. Recently, non-coding RNAs have drawn increased attention in cancer mechanistic studies. Specifically, nickel has been found to disrupt expression and functions of micro-RNAs and long-non-coding RNAs, resulting in subsequent changes in target gene expression levels, some of which include key cancer genes such as p53, MDM2, c-myc, and AP-1. Non-coding RNAs are also involved in well-studied mechanisms of nickel-induced lung carcinogenesis, such as the hypoxia-inducible factor (HIF) pathway, oxidative stress, DNA damage and repair, DNA hypermethylation, and alterations in tumor suppressors and oncogenes. This review provides a summary of the currently known epigenetic mechanisms involved in nickel-induced lung carcinogenesis, with a particular focus on non-coding RNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.