Mild traumatic brain injuries can lead to long-lasting cognitive and motor deficits, increasing the risk of future behavioral, neurological, and affective disorders. Our study focused on long-term behavioral deficits after repeated injury in which mice received either a single mild CHI (mCHI), a repeated mild CHI (rmCHI) consisting of one impact to each hemisphere separated by 3 days, or a moderate controlled cortical impact injury (CCI). Shams received only anesthesia. Behavioral tests were administered at 1, 3, 5, 7, and 90 days post-injury (dpi). CCI animals showed significant motor and sensory deficits in the early (1–7 dpi) and long-term (90 dpi) stages of testing. Interestingly, sensory and subtle motor deficits in rmCHI animals were found at 90 dpi. Most importantly, depression-like behaviors and social passiveness were observed in rmCHI animals at 90 dpi. These data suggest that mild concussive injuries lead to motor and sensory deficits and affective disorders that are not observed after moderate TBI.
Fear discrimination is critical for survival, while fear generalization is effective for avoiding dangerous situations. Overgeneralized fear is a typical symptom of anxiety disorders, including generalized anxiety disorder and posttraumatic stress disorder (PTSD). Previous research demonstrated that fear discrimination learning is mediated by prefrontal mechanisms. While the prelimbic (PL) and infralimbic (IL) subdivisions of the medial prefrontal cortex (mPFC) are recognized for their excitatory and inhibitory effects on the fear circuit, respectively, the mechanisms driving fear discrimination are unidentified. To obtain insight into the mechanisms underlying context-specific fear discrimination, we investigated prefrontal neuronal ensembles representing distinct experiences associated with learning to disambiguate between dangerous and similar, but not identical, harmless stimuli. Here, we show distinct quantitative activation differences in response to conditioned and generalized fear experiences, as well as modulation of the neuronal ensembles associated with successful acquisition of context-safety contingencies. These findings suggest that prefrontal neuronal ensembles patterns code functional context-danger and context-safety relationships. The PL subdivision of the mPFC monitors context-danger associations to conditioned fear, whereas differential conditioning sparks additional ensembles associated with the inhibition of generalized fear in both the PL and IL subdivisions of the mPFC. Our data suggest that fear discrimination learning is associated with the modulation of prefrontal subpopulations in a subregion-and experience-specific fashion, and the learning of appropriate responses to conditioned and initially generalized fear experiences is driven by gradual updating and rebalancing of the prefrontal memory representations.
Cannabis continues to be the most accessible and popular illicit recreational drug. Whereas current data link adolescence cannabinoid exposure to increased risk for dependence on other drugs, depression, anxiety disorders and psychosis, the mechanism(s) underlying these adverse effects remains controversial. Here we show in a mouse model of female adolescent cannabinoid exposure a deficient endocannabinoid (eCB)-mediated signaling and presynaptic forms of long-term depression at adult central glutamatergic synapses in the prefrontal cortex. Increasing endocannabinoid levels by blockade of monoacylglycerol lipase, the primary enzyme responsible for degrading the endocannabinoid 2-arachidonoylglycerol (2-AG), with the specific inhibitor JZL184 ameliorates these deficits. The observed deficit in cortical eCB-dependent signaling may represent a neural maladaptation underlying network instability and abnormal cognitive functioning. Our study suggests that adolescent cannabinoid exposure may permanently impair brain functions, including the brain’s intrinsic ability to appropriately adapt to external influences.
Androgens/androgen receptor (AR)-mediated signaling pathways are essential for prostate development, morphogenesis and regeneration. Specifically, stromal AR signaling has been shown to be essential for prostatic initiation. However, the molecular mechanisms underlying AR-initiated mesenchymal-epithelial interactions in prostate development remain unclear. Here, using a newly generated mouse model, we have directly addressed the fate and role of genetically marked AR-expressing cells during embryonic prostate development. Androgen signaling-initiated signaling pathways were identified in mesenchymal niche populations at single-cell transcriptomic resolution. The dynamic cell-signaling networks regulated by stromal AR were additionally characterized in relation to prostatic epithelial bud formation. Pseudotime analyses further revealed the differentiation trajectory and fate of AR-expressing cells in both prostatic mesenchymal and epithelial cell populations. Specifically, the cellular properties of Zeb1-expressing progenitors were assessed. Selective deletion of AR signaling in a subpopulation of mesenchymal rather than epithelial cells dysregulated the expression of the master regulators and significantly impaired prostatic bud formation. These data provide novel, high-resolution evidence demonstrating the important role of mesenchymal androgen signaling in the cellular niche controlling prostate early development by initiating dynamic mesenchyme-epithelia cell interactions.
Stromal androgen-receptor (AR) action is essential for prostate development, morphogenesis, and regeneration. However, mechanisms underlying how stromal AR maintains the cell niche in support of pubertal prostatic epithelial growth are unknown. Here, using advanced mouse genetic tools, we demonstrate that selective deletion of stromal AR expression in prepubescent Shh responsive Gli1-expressing cells significantly impedes pubertal prostate epithelial growth and development. Single-cell transcriptomic analyses showed that AR loss in these prepubescent Gli1-expressing cells dysregulates androgen-signaling initiated stromal-epithelial paracrine interactions, leading to growth retardation of pubertal prostate epithelia and significant development defects. Specifically, AR loss elevates Shh-signaling activation in both prostatic stromal and adjacent epithelial cells, directly inhibiting prostatic epithelial growth. Single-cell trajectory analyses further identified aberrant differentiation fates of prostatic epithelial cells directly altered by stromal AR deletion. In vivo recombination of AR-deficient stromal Gli1-lineage cells with wild-type prostatic epithelial cells failed to develop normal prostatic epithelia. These data demonstrate novel mechanisms underlying how stromal AR-signaling facilitates Shh-mediated cell niches in pubertal prostatic epithelial growth and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.