This paper presents a multi-modal approach to automatically identifying guitar chords using audio and video of the performer. Chord identification is typically performed by analyzing the audio, using a chroma based feature to extract pitch class information, then identifying the chord with the appropriate label. Even if this method proves perfectly accurate, stringed instruments add extra ambiguity as a single chord or melody may be played in different positions on the fretboard. Preserving this information is important, because it signifies the original fingering, and implied "easiest" way to perform the selection. This chord identification system combines analysis of audio to determine the general chord scale (i.e. A major, G minor), and video of the guitarist to determine chord voicing (i.e. open, barred, inversion), to accurately identify the guitar chord.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.