We report surface observations of a mesoscale coccolithophore bloom at the shelf break of the Patagonian Shelf during December 2008, representing the densest coccolithophore population in the Southern Ocean. The bloom was most intense within the Falklands Current, northeast of the Falkland Islands. Emiliania huxleyi dominated bloom waters, with a mixed E. huxleyi and Prorocentrum sp. dinoflagellate bloom to the west and mixed assemblage of diatoms, dinoflagellates, and flagellates to the east. Optical measurements of coccolith light scattering, analytical measurements of their calcite, and microscopic counts all showed this to be an intense coccolithophore bloom. Average particulate inorganic carbon per coccolith in the bloom was low, typical of the B coccolith morphotype and in agreement with independent measurements made by scanning electron microscopy. Highest particulate inorganic carbon (measured optically and chemically) was observed when residual nitrate (defined as the difference, [NO { 3 ] 2 [Si(OH) 4 ]) was 10-17 mmol L 21 and nitrate to phosphate ratios were close to Redfield values. Elevated particle backscattering was observed in the E. huxleyi bloom, whereas the highest particle scattering occurred in the adjoining Prorocentrum sp. bloom. Backscattering from coccolithophores represented up to 50% of the total backscattering (from organic and inorganic particles) along the main axis of the E. huxleyi bloom. Chlorophyll-specific absorption in the coccolithophore bloom was typical of marine phytoplankton. Residual nitrate plotted vs. temperature showed that the E. huxleyi bloom was associated with waters between 5uC and 15uC, with depleted silicate. Results suggest that previous drawdown of silicate by diatoms occurred prior to the densest E. huxleyi blooms over the Patagonian Shelf. We speculate that such conditions might also be important for annual development of the broader Great Calcite Belt and other coccolithophore blooms.
Abstract. Phytoplankton identification and abundance data are now commonly feeding plankton distribution databases worldwide. This study is a first attempt to compile the largest possible body of data available from different databases as well as from individual published or unpublished datasets regarding diatom distribution in the world ocean. The data obtained originate from time series studies as well as spatial studies. This effort is supported by the Marine Ecosystem Model Inter-Comparison Project (MAREMIP), which aims at building consistent datasets for the main Plankton Functional Types (PFT) in order to help validate biogeochemical ocean models by using carbon (C) biomass derived from abundance data. In this study we collected over 293 000 individual geo-referenced data points with diatom abundances from bottle and net sampling. Sampling site distribution was not homogeneous, with 58% of data in the Atlantic, 20% in the Arctic, 12% in the Pacific, 8% in the Indian and 1% in the Southern Ocean. A total of 136 different genera and 607 different species were identified after spell checking and name correction. Only a small fraction of these data were also documented for biovolumes and an even smaller fraction was converted to C biomass. As it is virtually impossible to reconstruct everyone's method for biovolume calculation, which is usually not indicated in the datasets, we decided to undertake the effort to document, for every distinct species, the minimum and maximum cell dimensions, and to convert all the available abundance data into biovolumes and C biomass using a single standardized method. Statistical correction of the database was also adopted to exclude potential outliers and suspicious data points. The final database contains 90 648 data points with converted C biomass. Diatom C biomass calculated from cell sizes spans over eight orders of magnitude. The mean diatom biomass for individual locations, dates and depths is 141.19 μg C l−1, while the median value is 11.16 μg C l−1. Regarding biomass distribution, 19% of data are in the range 0–1 μg C l−1, 29% in the range 1–10 μg C l−1, 31% in the range 10–100 μg C l−1, 18% in the range 100–1000 μg C l−1, and only 3% >1000 μg C l−1. Interestingly, less than 50 species contributed to >90% of global biomass, among which centric species were dominant. Thus, placing significant efforts on cell size measurements, process studies and C quota calculations on these species should considerably improve biomass estimates in the upcoming years. A first-order estimate of the diatom biomass for the global ocean ranges from 449 to 558 Tg C, which converts to 5 to 6 Tmol Si and to an average Si biomass turnover rate of 0.11 to 0.20 d−1. Link to the dataset: preliminary link http://doi.pangaea.de/10.1594/PANGAEA.777384.
Abstract. During the austral summer of 2008, we carried out a high resolution survey of the microplankton communities along a south to north transect covering a range of environments across the Scotia Sea, Southern Ocean; high and low productivity, sea-ice to open water conditions, and over a number of oceanographic fronts and bathymetric features. Cluster analysis revealed five distinct communities that were geographically constrained by physical features of bathymetry and fronts. From south to north the communities were: (1) The South Orkney group, a mixed community of naked dinoflagellates and heavily silicified diatoms, (2) Southern Scotia Sea, a mixed community of cyptophytes and naked dinoflagellates, (3) Central Scotia Sea, dominated by naked dinoflagellates, (4) southwest of the island of South Georgia, lightly silicified diatoms and naked dinoflagellates (5) northwest of South Georgia, dominated by diatoms. Data from a previous summer cruise (2003) to the Scotia Sea followed a similar pattern of community distribution. MODIS images, chlorophyll-a and macronutrient deficits revealed dense phytoplankton blooms occurred around the island of South Georgia, were absent near the ice edge and in the central Scotia Sea and were moderate in the southern Scotia Sea. Using these environmental factors, together with community composition, we propose that south of the Southern Antarctic Circumpolar Current Front, biogenic silica is preferentially exported and north of the front, in the vicinity of South Georgia, carbon is exported to depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.