The distribution of fuels is recognised as a key driver of wildland fire behaviour. However, our understanding of how fuel density heterogeneity affects fire behaviour is limited because of the challenges associated with experiments that isolate fuel heterogeneity from other factors. Advances in fire behaviour modelling and computational resources provide a means to explore fire behaviour responses to fuel heterogeneity. Using an ensemble approach to simulate fire behaviour in a coupled fire–atmosphere model, we systematically tested how fuel density fidelity and heterogeneity shape effective wind characteristics that ultimately affect fire behaviour. Results showed that with increased fuel density fidelity and heterogeneity, fire spread and area burned decreased owing to a combination of fuel discontinuities and increased fine-scale turbulent wind structures that blocked forward fire spread. However, at large characteristic length scales of spatial fuel density, the fire spread and area burned increased because local fuel discontinuity decreased, and wind entrainment into the forest canopy maintained near-surface wind speeds that drove forward fire spread. These results demonstrate the importance of incorporating high-resolution fuel fidelity and heterogeneity information to capture effective wind conditions that improve fire behaviour forecasts.
1. Structural diversity is an emerging dimension of biodiversity that accounts for size variations in organs among individuals in a community. Previous studies show significant effects of structural diversity on forest growth, but its effects on forest mortality are not known, particularly at a large scale.2. To address this knowledge gap, we quantified structural diversity using stem structural diversity (SSD) based on both tree diameter and height. We obtained U.S. Forest Service Forest Inventory and Analysis (FIA) data from over 2400 plots across southcentral U.S. forests that have suffered a recent drought. Using data from multiple sampling times, we calculated SSD and compared the relative importance of SSD, species diversity, functional diversity and other stand attributes in determining tree mortalities caused by fire, insects and diseases. We also used FIRETEC, a physics-based fire model, to test the effect of SSD on canopy consumption by fire.3. Our results showed that (1) SSD was positively associated with tree mortalities caused by all three disturbances; (2) species richness was negatively associated with insect-and disease-caused mortalities; (3) functional diversity was negatively associated with fire-and disease-caused mortalities and (4) more phylogenetically related species had more similar mortality rates by insect and disease but not fire. Moreover, the FIRETEC model showed increasing canopy consumption by fire in stands with greater SSD.4. Together, the different tree mortalities during drought associated with SSD more consistently than the other biodiversity metrics were evaluated. Synthesis.Our results suggest that SSD could be considered in modelling forest dynamics and planning management to sustain forest health under disturbances. K E Y W O R D Sforest health, plant population and community dynamics, plant-climate interactions, plantherbivore interactions, plant-pathogen interactions, stand structure, tree mortalityThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
<p>Mesoscale-to-Large Eddy Simulation (LES) grid nesting is an important tool for many atmospheric model applications, ranging from wind energy to wildfire spread studies. Different techniques are used in such applications to accelerate the development of turbulence in the LES domain. Here, we explore the impact of a simple and computationally efficient Stochastic Cell Perturbation method (SCPM) to accelerate the generation of turbulence in the Weather Research and Forecasting (WRF) LES model on the Turbulence Kinetic Energy (TKE) budget. In a convective boundary layer, we study the variation of TKE budget terms under the initial conditions of the Scaled Wind Farm Technology (SWiFT) facility located in West Texas. In this study, WRF LES is used with a horizontal grid resolution of 12 m, and is one-way nested within an idealized mesoscale domain. It is crucial to understand how forced perturbation shifts the balance between the terms of the TKE budget. Here, we quantify the shear production, and buoyant production in an unstable case. Since additional production terms are introduced in the SCPM method, we investigate the dissipation term of TKE. In addition, we also study the generation of turbulent transport. Generally, it integrates over height to null in a planar homogeneous case without subsidence, indicating it is positive over some heights and negative over other heights. Furthermore, we also study the variation of the TKE transport term after extending the random perturbation up to a certain height. The findings of this study will provide a better understanding of the contribution of different budget terms in a forced LES simulation.</p>
Outbreaks of several bark beetle species can develop rapidly in response to drought and may result in large transfers of carbon (C) stored in live trees to C stored in dead trees (10s of Tg C yr-1 in the western U.S. alone), which over time will be released back to the atmosphere. The western pine beetle (WPB) outbreak incited by the 2012–2015 mega-drought in the Sierra Nevada, California, U.S., could portend more frequent and/or severe bark beetle outbreaks as the temperature warms and drought frequency and intensity increase in the future. However, changes in the frequency and/or severity (resultant levels of host tree mortality) of beetle outbreaks are difficult to predict as outbreaks are complex with non-linear and eruptive processes primarily driven by interactions among beetle populations, the demography of hosts and other tree species, and climate and weather. Using an insect phenology and tree defense model, we projected the future likelihood of WPB outbreaks in the Sierra Nevada with climate drivers from different Earth System Models. Our goal was to understand how host (ponderosa pine, PIPO) recovery and future warming and drought affect the frequency and severity of WPB outbreaks and their C consequences. Our projections suggested that by 2100 the C stored in live PIPO (mean: 1.98 kg C m-2, 95% CI: 1.74–2.21 kg C m-2) will not return to levels that occurred before the 2012–2015 drought (2012: ∼2.30 kg C m-2) due to future WPB outbreaks. However, differences in climate models indicate a wide range of possible WPB outbreak frequencies and severities. Our results suggest that total plot basal area is the most significant factor in the mortality rate of PIPO by WPB in any given year, followed by drought severity and temperature. High levels of host basal area, higher temperature, and extreme drought all contribute to the frequency and severity of future WPB outbreaks. While PIPO basal area may decline under increased drought and warming, limiting high-stand basal area (>60 m2 ha-1) may reduce the severity of future WPB outbreaks in the Sierra Nevada.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.