The production of solid mine wastes is an integral part of the extraction and metallurgical processing of ores. The reclamation of highly reactive mine waste, with low neutralizing potential, is still a significant challenge for the mining industry, particularly when natural soils are not available close to the site. Some solid mine wastes present interesting hydro-geotechnical properties which can be taken advantage of, particularly for being used in reclamation covers to control acid mine drainage. The main objective of this research was to evaluate the use of mining materials (i.e., tailings and waste rock) in a cover with capillary barrier effects (CCBE) to prevent acid mine drainage (AMD) from highly reactive tailings. The first part of the project reproduced in this article involves context and laboratory validation of mining materials as suitable for a CCBE, while the companion paper reports laboratory and field results of cover systems made with mining materials. The main conclusions of the Part 1 of this study were that the materials studied (low sulfide tailings and waste rocks) had the appropriate geochemical and hydrogeological properties for use as cover materials in a CCBE. Results also showed that the cover mining materials are not acid-generating and that the LaRonde tailings are highly reactive with pH close to 2, with high concentrations of metals and sulfates.
The possibility of using mine wastes (low-sulfide tailings and waste rocks) as cover components to prevent acid mine drainage (AMD) generation from highly reactive tailings was previously investigated through a laboratory-based characterization of reactive tailings and cover materials (Part 1 of this study). Characterization results showed that the reactive tailings are highly acid-generating, and that the mine waste materials that were used in this study are non-acid-generating and have suitable hydrogeological and geochemical properties to be used in a cover with capillary barrier effects (CCBE). In order to further investigate the use of low-sulfide mining materials in the reclamation of highly reactive tailings, a large laboratory-based column and a field cell simulating a CCBE were constructed. The instrumented field cell used the same configuration and materials as the laboratory column. This paper presents the main findings from 504 days (column test) and three seasons (field test) of monitoring, and compares the hydrogeochemical behavior observed at the two scales. The results show that a CCBE made with low-sulfide mine wastes would be efficient at reducing oxygen fluxes and limiting AMD generation from highly reactive tailings at the laboratory and intermediate scale. However, at these two scales, the concentrations of some contaminants were not reduced to levels of the legally imposed environmental objectives. The results also showed differences in metal and sulfate concentrations in the drainage waters between the laboratory and field scales. The outcomes from this investigation highlight that the previous oxygen flux design targets and the typical configurations of multilayer covers developed for fresh non-oxidized tailings or pre-oxidized tailings may not always be directly applicable for fresh or pre-oxidized highly reactive tailings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.