Heavy metal-resistant bacteria can be efficient bioremediators of metals and might provide an alternative method for metal removal in contaminated environments. The present study aims to isolate bacteria from the aquatic environment and evaluate their potential tolerance to copper metal, aiming at bioremediation processes. Also, compare co-resistance to heavy metal and antibiotics. The morphology of isolates was observed, and sequence analysis (16S ribosomal DNA) revealed that isolated strains were closely related to species belonging to the genera Enterococcus and Bacillus. Bacterial isolates were resistant to CuSO4, with a minimum inhibitory concentration of 0.78 mg ml-1. Enterococcus lactis was resistant to a combination of copper and tetracycline. The other tested isolates were sensitive to the tested antimicrobials. The metal removal ability of these isolates was assayed using atomic absorption spectroscopy, and the strains 27, 23, and E. lactis were best at removing heavy metals, at 87.7%. Enterococcus casseliflavus EC55 was 62%, followed by Bacillus aerius (18.4%), E. casseliflavus EC70 (10%) and Bacillus licheniformis (10%). Based on our findings, Enterococcus sp and Bacillus sp. have potential applications in enhanced remediation of contaminated environments.
Todo o conteúdo deste livro está licenciado sob uma Licença de Atribuição Creative Commons. Atribuição 4.0 Internacional (CC BY 4.0). O conteúdo dos artigos e seus dados em sua forma, correção e confiabilidade são de responsabilidade exclusiva dos autores. Permitido o download da obra e o compartilhamento desde que sejam atribuídos créditos aos autores, mas sem a possibilidade de alterá-la de nenhuma forma ou utilizá-la para fins comerciais.
Laccase is an important enzyme in terms of its versatile applicability, but its commercial use is limited by factors such as high production cost, low activity and/or stability under given conditions. The objective of this study was to screen xylophagic bacteria isolated from termites for the production of extracellular and intracellular laccases. Six laccase-positive strains were isolated, namely CA, A3, A5, A6, A7 and A8. They were molecularly identified by sequence analysis of 16S rRNA and classified under the genera Bacillus (A7, A8, CA) and Pseudomonas (A3, A5, A6). Laccase was produced by these bacterial isolates by submerged fermentation and was optimized at 37°C, pH 5.5, 6.2 and 7.0, with agitation and 0.5 mM guaiacol (as carbon source). Laccase activity was determined by measuring the oxidation of guaiacol and ABTS (2,21-azino bis[3-ethylbenzthiazoline-6-sulfonate]). Strain A5 produced extracellular laccase titers ranging from 123 to 168 U ml-1. Guaiacol was identified as a better substrate for the quantification of laccase. In conclusion, bacteria harboring the gut of termites can produce extracellular laccase with activity at medium to moderate acidity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.