Amide I' IR spectra are widely used for studies of structural changes in peptides and proteins as a function of temperature. Temperature dependent absorptions of amino acid side-chains that overlap the amide I' may significantly complicate the structural analyses. While the side-chain IR spectra have been investigated previously, thus far their dependence on temperature has not been reported. Here we present the study of the changes in the IR spectra with temperature for side-chain groups of aspartate, glutamate, asparagine, glutamine, arginine, and tyrosine in the amide I' region (in D2O). Band fitting analysis was employed to extract the temperature dependence of the individual spectral parameters, such as peak frequency, integrated intensity, band width, and shape. As expected, the side-chain IR bands exhibit significant changes with temperature. The majority of the spectral parameters, particularly the frequency and intensity, show linear dependence on temperature, but the direction and magnitude vary depending on the particular side-chain group. The exception is arginine, which exhibits a distinctly nonlinear frequency shift with temperature for its asymmetric CN3H5(+) bending signal, although a linear fit can account for this change to within ~1/3 cm(-1). The applicability of the determined spectral parameters for estimations of temperature-dependent side-chain absorptions in peptides and proteins are discussed.
Model compounds were used to provide some chemical boundaries for the eight-fraction SAR-ADTM characterization method for heavy oils. It was found that the Saturates fraction consists of linear and highly cyclic alkanes; the Aro-1 fraction consists of molecules with a single aromatic ring; the Aro-2 fraction consists of mostly 2 and 3-ring fused aromatic molecules, the pericondensed 4-ring molecule pyrene, and molecules with 3–5 rings that are not fused; and the Aro-3 fraction consists of 4-membered linear and catacondensed aromatics, larger pericondensed aromatics, and large polycyclic aromatic hydrocarbons. The Resins fraction consists of mostly fused aromatic ring systems containing polar functional groups and metallated polar vanadium oxide porphyrin compounds, and the Asphaltene fraction consists of both island- and archipelago-type structures with a broad range of molecular weight variation, aromaticity, and heteroatom contents. The behavior of the eight SAR-ADTM fractions during hydrocracking and pyrolysis was investigated, and quantitative relations were established. Intercriteria analysis and evaluation of SAR-ADTM data of hydrocracked vacuum residue and sediment formation rate in commercial ebullated bed vacuum residue hydrocracking were performed. It showed that total asphaltene content, toluene-soluble asphaltenes, and colloidal instability index contribute to sediment formation, while Resins and Cyclohexane-soluble asphaltenes had no statistically meaningful relation to sediment formation for the studied range of operation conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.