The “nerve guide conduits” (NGC) used in nerve regeneration must mimic the natural environment for proper cell behavior. Objective: To describe the main morphological characteristics of polymeric NGC to promote nerve regeneration. Methods: A scoping review was performed following the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) criteria in the PubMed, Web of Science, Science Direct, and Scientific Electronic Library Online (SciELO) databases. Primary studies that considered/evaluated morphological characteristics of NGC to promote nerve regeneration were included. Result: A total of 704 studies were found, of which 52 were selected. The NGC main morphological characteristics found in the literature were: (I) NGC diameter affects the mechanical properties of the scaffold. (II) Wall thickness of NGC determines the exchange of nutrients, molecules, and neurotrophins between the internal and external environment; and influences the mechanical properties and biodegradation, similarly to NGC (III) porosity, (IV) pore size, and (V) pore distribution. The (VI) alignment of the NGC fibers influences the phenotype of cells involved in nerve regeneration. In addition, the (VII) thickness of the polymeric fiber influences neurite extension and orientation. Conclusions: An NGC should have its diameter adjusted to the nerve with wall thickness, porosity, pore size, and distribution of pores, to favor vascularization, permeability, and exchange of nutrients, and retention of neurotrophic factors, also favoring its mechanical properties and biodegradability.
Electrospun scaffolds can imitate the hierarchical structures present in the extracellular matrix, representing one of the main concerns of modern tissue engineering. They are characterized in order to evaluate their capability to support cells or to provide guidelines for reproducibility. The issues with widely used methods for morphological characterization are discussed in order to provide insight into a desirable methodology for electrospun scaffold characterization. Reported methods include imaging and physical measurements. Characterization methods harbor inherent limitations and benefits, and these are discussed and presented in a comprehensive selection matrix to provide researchers with the adequate tools and insights required to characterize their electrospun scaffolds. It is shown that imaging methods present the most benefits, with drawbacks being limited to required costs and expertise. By making use of more appropriate characterization, researchers will avoid measurements that do not represent their scaffolds and perhaps might discover that they can extract more characteristics from their scaffold at no further cost.
Electrospun scaffolds have a 3D fibrous structure that attempts to imitate the extracellular matrix in order to be able to host cells. It has been reported in the literature that controlling fiber surface topography produces varying results regarding cell–scaffold interactions. This review analyzes the relevant literature concerning in vitro studies to provide a better understanding of the effect that controlling fiber surface topography has on cell–scaffold interactions. A systematic approach following PRISMA, GRADE, PICO, and other standard methodological frameworks for systematic reviews was used. Different topographic interventions and their effects on cell–scaffold interactions were analyzed. Results indicate that nanopores and roughness on fiber surfaces seem to improve proliferation and adhesion of cells. The quality of the evidence is different for each studied cell–scaffold interaction, and for each studied morphological attribute. The evidence points to improvements in cell–scaffold interactions on most morphologically complex fiber surfaces. The discussion includes an in-depth evaluation of the indirectness of the evidence, as well as the potentially involved publication bias. Insights and suggestions about dose-dependency relationship, as well as the effect on particular cell and polymer types, are presented. It is concluded that topographical alterations to the fiber surface should be further studied, since results so far are promising.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.