= 7), and CVID (n = 10). The 14-color tube can identify ≥89 different CD4+ T-cell populations in blood, as validated with high multicenter reproducibility, particularly when software-guided automated (vs. manual expert-based) gating was used. Furthermore, age-related reference values were established, which reflect different kinetics for distinct subsets: progressive increase of naïve T cells, T-helper (Th)1, Th17, follicular helper T (TFH) cells, and regulatory T cells (Tregs) from birth until 2 years, followed by a decrease of naïve T cells, Th2, and Tregs in older children and a subsequent increase in multiple Th-cell subsets toward late adulthood. Altered and unique CD4+ T-cell subset profiles were detected in two of the three disease models evaluated (SM and CVID). In summary, the EuroFlow immune monitoring TCD4 tube allows fast, automated, and reproducible identification of ≥89 subsets of CD4+ blood T cells, with different kinetics throughout life. These results set the basis for in-depth T-cell monitoring in different disease and therapeutic conditions.
Background: Pertussis can lead to serious disease and even death in infants. Older adults are more vulnerable to complications as well. In high-income countries, acellular pertussis vaccines are used for priming vaccination. In the administration of booster vaccinations to different age groups and target populations there is a substantial between-country variation. We investigated the effect of age on the response to acellular pertussis booster vaccination in three European countries. Methods: This phase IV longitudinal intervention study performed in Finland, the Netherlands and the United Kingdom between October 2017 and January 2019 compared the vaccine responses between healthy participants of four age groups: children (7À10y), adolescents (11À15y), young adults (20À34y), and older adults (60À70y). All participants received a three-component acellular pertussis vaccine. Serum IgG and IgA antibody concentrations to pertussis antigens at day 0, 28, and 1 year were measured with a multiplex immunoassay, using pertussis toxin concentrations at day 28 as primary outcome. This trial is registered with ClinicalTrialsRegister.eu (2016À003,678À42). Findings: Children (n = 109), adolescents (n = 121), young adults (n = 74), and older adults (n = 75) showed high IgG antibody concentrations to pertussis toxin at day 28 with GMCs of 147 (95% CI 120À181), 161 (95% CI 132À196), 103 (95% CI 80À133), and 121 IU/ml (95% CI 94À155), respectively. A significant increase in GMCs for vaccine antigens in all age groups by 28 days was found which had decreased by 1 year. Differences in patterns of IgG GMCs at 28 days and 1 year post-vaccination did not have a consistent relationship to age. In contrast, IgA antibodies for all antigens increased with age at all timepoints. Interpretation: Acellular pertussis booster vaccination induces significant serum IgG responses to pertussis antigens across the age range which are not uniformly less in older adults. Acellular boosters could be considered for older adults to reduce the health and economic burden of pertussis.
Purpose. Serological analysis is an essential tool for the diagnosis of pertussis or whooping cough, disease surveillance and the evaluation of vaccine effectiveness against Bordetella pertussis . Accurate measurement of anti-pertussis toxin (anti-PT) IgG antibody levels in sera is essential. These measurements are usually performed using immunological methods such as ELISA and multiplex immunoassays. However, there are a large number of different assay systems available, and therefore standardization and harmonization between the methods are needed to obtain comparable data. Methodology. In collaboration with ECDC, the EUPert-LabNet network has organized three External Quality Assessment (EQA) schemes (2010, 2012 and 2016), which initially identified the diverse range of techniques and reagents being used throughout Europe. This manuscript discusses the findings of each of the EQA rounds and their impact on the participating laboratories. Results. The studies have shown an increasing number of laboratories (from 65% to 92%) using only the recommended coating antigen, purified PT, in immunoassays, as this allows exact quantification of serum anti-PT IgG and since PT is only produced by Bordetella pertussis this prevents cross-reactivity with other species. There has also been an increase in the numbers of laboratories (from 59% to 92%), including a WHO reference serum in their assays, which allows anti-PT IgG concentrations to be measured in International Units, thus enabling the comparison of results from different methods and laboratories. In addition, manufacturers have also considered these recommendations when they produce commercial ELISA kits. Conclusion. The three EQA rounds have resulted in greater harmonization in methods among different laboratories, showing a significant improvement of the ELISA methods used for serodiagnosis of pertussis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.