The carbon dioxide reduction reaction (CO2RR) in aqueous electrolytes suffers from efficiency loss due to the competitive hydrogen evolution reaction (HER). Developing efficient methods to suppress HER is a crucial step toward CO2 utilization. Herein, we report the selective conversion of CO2 to CO on planar silver electrodes with Faradaic efficiencies >99 % using simple pyridinium-based additives. Similar to our previous studies on copper electrodes, the additives form an organic film which alters CO2RR selectivity. We report electrochemical kinetic and other mechanistic data to shed light on the role of these organic layers in suppressing HER. These data suggest that hydrogen production is selectively inhibited by the growth of a hydrophobic organic layer on the silver surface that limits proton but not CO2 mass transport at certain applied potentials. The data also point to the involvement of a proton-transfer within the rate determining step of the catalysis, instead of the commonly observed electron-transfer step for the case of planar Ag electrodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.