Animals must selectively attend to relevant stimuli and avoid being distracted by unimportant stimuli. Jumping spiders (Salticidae) do this by coordinating eyes with different capabilities. Objects are examined by a pair of high-acuity principal eyes, whose narrow field of view is compensated for by retinal movements. The principal eyes overlap in field of view with motion-sensitive anterior-lateral eyes, which direct their gaze to new stimuli. Using a salticid-specific eyetracker, we monitored the gaze direction of the principal eyes as they examined a primary stimulus. We then presented a distractor stimulus visible only to the ALEs and observed whether the principal eyes reflexively shifted their gaze to it or whether this response was flexible. Whether spiders redirected their gaze to the distractor depended on properties of both the primary and distractor stimuli. This flexibility suggests that higher-order processing occurs in the management of the attention of the principal eyes.
Understanding how the psychology of predators shapes the defenses of colorful aposematic prey has been a rich area of inquiry, with emphasis on hypothesis-driven experiments that independently manipulate color and palatability in prey to examine predator responses. Most of these studies focus on avian predators, despite calls to consider more taxonomically diverse predators. This taxonomic bias leaves gaps in our knowledge about the generalizability of current theory. Here we have adapted tools that have been successfully used with bird predators and scaled them down and tested them with smaller predators (Habronattus jumping spiders) and small insect prey (termites, milkweed bug nymphs, pinhead crickets, fruit flies). Specifically, we test (1) the application of denatonium benzoate (DB) to the surface of live termites, crickets, and fruit flies, and (2) the effectiveness of manipulating the palatability of milkweed bug nymphs through diet. We also test the effectiveness of combining these palatability manipulations with various color manipulations. Across several experiments, we confirm that our palatability manipulations are not detectable to the spiders before they attack (i.e., they do not produce aversive odors that spiders avoid), and show that unpalatable prey are indeed quickly rejected and spiders do not habituate to the taste with experience. We also investigate limitations of these techniques by assessing possible unintended effects on prey behavior and the risk of contact contamination when using DBtreated prey in experiments. While similar tools have been used to manipulate color and palatability with avian predators and relatively large insect prey, we show how these techniques can be effectively adapted for use with small invertebrate predators and prey.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.