Principal Component Analysis (PCA) is a wellestablished approach commonly used for dimensionality reduction. However, its computational cost and memory requirements hamper the adoption of PCA in heavily resource-constrained embedded platforms. Streaming approaches have been proposed that may enable embedded implementations of the PCA. Among them, the History PCA (HPCA) algorithm stands out for its robustness to the variability in parameters and accuracy. This paper presents a parallel and memory-efficient implementation of HPCA in a structural health monitoring (SHM) application based on a heterogeneous network with sensor nodes measuring three-axial accelerations and gateways collecting measurements from several nodes and sending them to the cloud storage and analytic facility. In the targeted application, standard PCA reaches 15× compression factor with an average reconstruction signal to noise ratio of 16 dB and a negligible impact on the accuracy in the tracking of structural modal frequencies. By embedding HPCA on our SHM network gateways, we achieve the same compression factor as standard PCA, with more than 1000× reduction in data memory footprint for running the algorithm. Furthermore, we parallelize HPCA on the gateway, and we achieve a speedup of 7.1× (on 8 cores). Finally, we explore a fixed-point HPCA implementation on sensors (network end-nodes), that maximally distributes compression workload, minimizes required communication bandwidth, and maintains the same quality of reconstruction as HPCA in floating-point, with a compression factor of 10×.
Principal component analysis (PCA) is a powerful data reduction method for Structural Health Monitoring. However, its computational cost and data memory footprint pose a significant challenge when PCA has to run on limited capability embedded platforms in low-cost IoT gateways. This paper presents a memory-efficient parallel implementation of the streaming History PCA algorithm. On our dataset, it achieves 10× compression factor and 59× memory reduction with less than 0.15 dB degradation in the reconstructed signal-to-noise ratio (RSNR) compared to standard PCA. Moreover, the algorithm benefits from parallelization on multiple cores, achieving a maximum speedup of 4.8× on Samsung ARTIK 710.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.