The thawing and subsidence of frozen peat mounds (palsas) in permafrost landscapes results in the formation of organic‐rich thermokarst lakes. We examined the effects of palsa degradation on CH4 and CO2 emissions by comparing thermokarst lakes at two peatland locations in subarctic Québec, Canada: in the northern discontinuous permafrost region, and in southern sporadic permafrost where palsas are more rapidly degrading. The lakes were shallow (< 3 m) but stratified at both sites, and most had anoxic bottom waters. The surface waters at both sites were supersaturated in CH4 and CO2, and to a greater extent in the southern lakes, where the surface CH4 concentrations were up to 3 orders of magnitude above air equilibrium. Concentrations of CH4 and CO2 increased by orders of magnitude with depth in the southern lakes, however these gradients were less marked or absent in the North. Strong CH4 and CO2 emissions were associated with gas ebullition, but these were greatly exceeded by diffusive fluxes, in contrast to thermokarst lakes studied elsewhere. Also unusual relative to other studies to date, the surface concentrations of both gases increased as a linear function of water column depth, with highest values over the central, deepest portion of the lakes. Radiocarbon dating of ebullition gas samples showed that the CH4 had 14C‐ages from 760 yr to 2005 yr before present, while the CO2 was consistently younger. Peatland thermokarst lakes may be an increasingly important source of greenhouse gases as the southern permafrost limit continues to shift northwards.
Permafrost thaw lakes occur in high abundance across the subarctic landscape but little is known about their limnological dynamics. This study was undertaken to evaluate the hourly, seasonal, and depth variations in oxygen concentration in three thaw lakes in northern Quebec, Canada, across contrasting permafrost regimes (isolated, sporadic, and discontinuous). All lakes were well stratified in summer despite their shallow depths (2.7-4.0 m), with hypoxic or anoxic bottom waters. Continuous automated measurements in each of the lakes showed a period of water column oxygenation over several weeks in fall followed by bottom-water anoxia soon after ice-up. Anoxic conditions extended to shallower depths (1 m) over the course of winter, beginning 18-137 d after ice formation, depending on the lake. Full water column anoxia extended over 33-75% of the annual record. There was a brief period of incomplete spring mixing with partial or no reoxygenation of the bottom waters in each lake. Conductivity measurements showed the build-up of solutes in the bottom waters, and the resultant density increase contributed to the resistance to full mixing in spring. These observations indicate the prevalence of stratified conditions throughout most of the year and underscore the importance of the fall mixing period for gas exchange with the atmosphere. Given the long duration of anoxia, subarctic thaw lakes represent an ideal environment for anaerobic processes such as methane production. The intermittent oxygenation also favors intense methanotrophy and aerobic bacterial decomposition processes.Northern landscapes underlain by permafrost (perennially frozen ground) are currently in rapid transition in response to atmospheric warming (AMAP 2012). The unfrozen surface layer (active layer) has deepened in certain regions, and the vast, ancient reserves of organic carbon stored in the permafrost have begun to be mobilized (Schuur et al. 2015). Considerable research has focused on the influence of climate warming on greenhouse gas emissions from permafrost soils (e.g., McGuire et al. 2012;Elberling et al. 2013), but the lakes on permafrost landscapes and their biogeochemical responses to climate change have only recently begun to receive close attention.Thaw lakes (thermokarst lakes and ponds) are one of the most abundant freshwater ecosystem types in the circumpolar North, with a likely total area of 2.5-3. et al. 2006). Small lakes at high northern latitudes dominate the total land-water interface (perimeter) of lakes throughout the world (Verpoorter et al. 2014), and the large total perimeter of eroding permafrost soils that surround northern thaw lakes further indicates their potential biogeochemical significance. Lakes across the circumpolar North are responding in variable ways to climate warming, with drainage, infilling or evaporation of thaw lakes in some areas, but increases in their abundance and size in others (Vincent et al. 2013). In the subarctic region of eastern Canada, the southern
Lakes and ponds derived from thawing permafrost are strong emitters of carbon dioxide and methane to the atmosphere, but little is known about the methane oxidation processes in these waters. Here we investigated the distribution and potential activity of aerobic methanotrophic bacteria in thaw ponds in two types of eroding permafrost landscapes in subarctic Québec: peatlands and mineral soils. We hypothesized that methanotrophic community composition and potential activity differ regionally as a function of the landscape type and permafrost degradation stage, and locally as a function of depth-dependent oxygen conditions. Our analysis of pmoA transcripts by Illumina amplicon sequencing and quantitative PCR showed that the communities were composed of diverse and potentially active lineages. Type I methanotrophs, particularly Methylobacter, dominated all communities, however there was a clear taxonomic separation between the two landscape types, consistent with environmental control of community structure. In contrast, methanotrophic potential activity, measured by pmoA transcript concentrations, did not vary with landscape type, but correlated with conductivity, phosphorus and total suspended solids. Methanotrophic potential activity was also detected in low-oxygen bottom waters, where it was inversely correlated with methane concentrations, suggesting methane depletion by methanotrophs. Methanotrophs were present and potentially active throughout the water column regardless of oxygen concentration, and may therefore be resilient to future mixing and oxygenation regimes in the warming subarctic.PLOS ONE | https://doi.org/10.1371/journal.pone
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.