MIL-STD 1530D requires that the certification of an aircraft part employ analytical tools that are capable of modeling crack growth. It is further stated that the durability and damage tolerance (DADT) analyses should be based on linear elastic fracture mechanics (LEFM) and follow a building block approach. This paper illustrates the durability analysis required to certify an additively manufactured part by using the examples of durability tests performed on two wire arc additively manufactured (WAAM) 18Ni 250 Maraging steel specimens.
The airworthiness certification of military aircraft requires a durability analysis be performed using linear elastic fracture mechanics (LEFM). Furthermore, such analyses need to use a valid small crack growth equation. This paper focuses on the effect of rough surfaces and the effect of machining the surface on the durability of AM parts using LEFM and a valid small crack growth equation for the material. To this end, this paper analyses the effect of surface roughness on wire and arc additively manufactured (WAAM) Ti-6Al-4V titanium parts and the effect of machining on the durability of a part. The analysis reveals that the life of the component is a relatively strong function of the degree of surface roughness, and that the durability of a specimen is a strong function of the local radius of the curvature of the trough. It also appears that surfaces with tall narrow roughness will not overly benefit from partial machining of the surface.
The durability assessment of additively manufactured parts needs to account for both surface-breaking material discontinuities and surface-breaking porosity and how these material discontinuities interact with parts that have been left in the as-built state. Furthermore, to be consistent with the airworthiness standards associated with the certification of metallic parts on military aircraft the durability analysis must be able to predict crack growth, as distinct from using a crack growth analysis in which parameters are adjusted so as to match measured data. To partially address this, the authors recently showed how the durability of wire arc additively manufactured (WAAM) 18Ni-250 maraging steel specimens, where failure was due to the interaction of small surface-breaking cracks with surface roughness, could be predicted using the Hartman–Schijve variant of the NASGRO crack growth equation. This paper illustrates how the same equation, with the same material parameters, can be used to predict the durability of a specimen where failure is due to surface-breaking porosity.
This paper first examines crack growth in a range of tests on additively manufactured (AM) and conventionally manufactured Inconel 718. It is shown that whereas when the crack growth rate (da/dN) is plotted as a function of the range of the stress intensity factor (ΔK), the crack growth curves exhibit considerable scatter/variability, when da/dN is expressed in terms of the Schwalbe crack driving force (Δκ), then each of the 33 different curves essentially collapse onto a single curve. This relationship appears to hold over approximately six orders of magnitude in da/dN. The same phenomenon also appears to hold for 20 room temperature tests on both conventionally and additively manufactured Inconel 625. Given that the 53 studies examined in this paper were taken from a wide cross section of research studies it would appear that the variability in the da/dN and ΔK curves can (to a first approximation) be accounted for by allowing for the variability in the fatigue threshold and the cyclic fracture toughness terms in the Schwalbe crack driving force. As such, the materials science community is challenged to address the fundamental science underpinning this observation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.