The primary focus of this review concerns the test methods used to evaluate thermal spray coatings. Techniques to measure coating intrinsic properties such as (i) porosity and (ii) residual stress state; as well as extrinsic mechanical properties that include (iii) hardness, (iv) adhesion, (v) elastic modulus, (vi) fracture toughness, and (vi) the Poisson's ratio of thermal spray coatings are presented. This review also encompasses the feedstock and thermal spray method since process variants create a specific microstructure. An important aspect of this work is to highlight the extrinsic nature of mechanical property measurements with regard to thermal spray coatings. Thermal spray coatings exhibit anisotropic behaviour and microstructural artefacts such as porosity and the splat structure of coatings influence the mechanical characterisation methods. The analysis of coating data variability evolving from the different measurement techniques is of particular relevance to interpret the character of thermal spray deposits. Many materials can be thermal sprayed but this review focuses on alumina and partially stabilised zirconia since (i) these materials have many proven applications, and (ii) there is a wealth of information that has been reported on these ceramics.
High-entropy alloys (HEAs) are a new generation of materials that exhibit unique characteristics and properties, and are demonstrating potential in the form of thermal spray coatings for demanding environments. The use of HEAs as feedstock for coating processes has advanced due to reports of their exceptional properties in both bulk and coating forms. Emerging reports of thermal sprayed HEA coatings outperforming conventional materials have accelerated further exploration of this field. This early-stage review discusses the outcomes of combining thermal spray and HEAs. Various synthesis routes adopted for HEA feedstock preparation and their properties are discussed, with reference to the requirements of thermal spray processing. The HEA feedstock is then compared and correlated with coating microstructure and phase composition as a function of the thermal spray processing route. Subsequently, the mechanical behavior of thermal spray HEA coatings is summarized in terms of porosity, hardness, and tribological properties, along with their oxidation and electrochemical properties, followed by their potential applications. The thermal spray methods are contrasted against laser cladding and surface alloying techniques for synthesizing thick HEA coatings. Furthermore, HEAs that have displayed excellent properties via alternative processing routes, but have not been explored within the framework of thermal spray, are recommended.
Graphene has become an important research focus in many current fields of science including composite manufacturing. Developmental work in the field of graphene‐enhanced composites has revealed several functional and structural characteristics that promise great benefits for their use in a broad range of applications. There has been much interest in the production of multiscale high‐performance, lightweight, yet robust, multifunctional graphene‐enhanced fiber‐reinforced polymer (gFRP) composites. Although there are many reports that document performance enhancement in materials through the inclusion of graphene nanomaterials into a matrix, or its integration onto the reinforcing fiber component, only a few graphene‐based products have actually made the transition to the marketplace. The primary focus of this work concerns the structural gFRPs and discussion on the corresponding manufacturing methodologies for the effective incorporation of graphene into these systems. Another important aspect of this work is to present recent results and highlight the excellent functional and structural properties of the resulting gFRP materials with a view to their future applications. Development of clear standards for the assessment of graphene material properties, improvement of existing materials and scalable manufacturing technologies, and specific regulations concerning human health and environmental safety are key factors to accelerate the successful commercialization of gFRPs.
Suspension High Velocity Oxy Fuel Spraying (SHVOF) can be used to produce thermally sprayed coatings from powdered feedstocks too small to be processed by mechanical feeders, allowing formation of nanostructured coatings with improved density and mechanical properties. Here, alumina coatings were produced from sub-micron sized feedstock in aqueous suspension, using two flame combustion parameters yielding contrasting microstructures. Both coatings were tested in dry sliding wear conditions with an alumina counterbody. The coating processed with high combustion power of 101 kW contained 74 wt% amorphous phase and 26 wt% crystalline phase (95 wt% gamma and 3 wt% alpha alumina) while the 72 kW coating contained lower 58 wt% amorphous phase and 42 wt% crystalline phases (73 wt% was alpha and 26 wt % gamma). The 101 kW coating had a dry sliding specific wear rate between 4-4.5 x 10 -5 mm 3 /Nm, 2 orders of magnitude higher than the 72 kW coating wear rate of 2-4.2 x 10 -7 mm 3 /Nm. A severe wear regime dominated by brittle fracture and grain pull out of the coating was responsible for the wear of the 101 kW coating, explained by mean fracture toughness three times lower than the 72 kW coating, owing to the almost complete absence of alpha alumina.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.