The processes of decomposition that the body will have after the time of death are peculiar and complex. The body swells and expels gases and fluids, and the flesh decays. It also attracts many insects and scavengers. We know that these fluids are nutrients for the vegetation, and if the body is inhumed in the subsurface, they allow a rapid crop growth that remote sensors can mark. During forensic investigations, mapping the fluid migration in the subsurface can help reconstruct the genesis of a clandestine grave. Several studies show how different remote sensors and analyses can be sensitive to human burials. This paper presents a preliminary experiment studying the fluid dispersion in the subsurface using simulated body fluids in a shallow grave and detecting it through the ground penetrating radar (GPR) technique (given its ability to detect dielectric constant changes in the investigated media) and other remote sensing techniques. Although the simulation of the body fluids related to the dielectric constant was accurate and allowed us to better understand how decomposition in the subsurface does not always migrate in the way that was initially expected (toward gravity), other typical characteristics of the body fluids, other soils and external factors were left out and would be studied in future simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.