To characterize the interactions between rotorcraft and ground obstacles when tackling modern and emerging problems such as shipboard landings and urban air mobility, first-principles computational models offer the ability to perform design and analytical studies while resolving detailed flow features. However, the cost of Navier–Stokes methods with very high resolution is, for the most part, only tractable for research use cases. Conversely, midfidelity potential-based methods are cost-effective but may not capture important physics that occur near the rotor blades. Hybrid approaches that couple Navier–Stokes and potential solvers have recently been developed, which provide the ability to resolve complex physics with a Navier–Stokes solution while employing a potential solver to resolve far-wake effects for which it is well-suited. This research discusses the impact of new improvements to and best practices for the hybrid Navier–Stokes/free-wake solver OVERFLOW-CHARM applied to rotors in ground effect. Predictions of rotor performance and flow features are compared with experimental data for microscale and subscale rotors. Rotor performance is predicted within 6% of a conventional computational fluid dynamics simulation at approximately 20% of the computational cost and predicted flow features correlate well to experimental flow visualization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.