Different skin attributes influence the estimation of age. These attributes have a different weight in the evaluation of the perceived age, depending on the age and of the observer. The most important attributes to estimate age are eyes, lips and skin colour uniformity.
Dermal elastic fibres are extracellular matrix protein complexes produced by fibroblasts and involved in skin elasticity. Elastin fibres decrease with age as a result of reduced synthesis and increased degradation, resulting in skin sagging and reduced skin elasticity. In this study, we show that retinol (ROL), known to enhance dermal collagen production, is also enhancing elastin fibre formation. ROL induced elastin gene expression and elastin fibre formation in cultured human dermal fibroblasts. Topical treatment of cultured human skin explants with a low dose (0.04%) of ROL increased mRNA and protein levels of tropoelastin and of fibrillin-1, an elastin accessory protein, as documented by QPCR and immunohistochemistry staining. Luna staining confirmed the increased elastin fibre network in the ROL-treated skin explants, as compared with untreated controls. These data demonstrate that ROL exerts its anti-ageing benefits not only via enhanced epidermal proliferation and increased collagen production, but also through an increase in elastin production and assembly.
A detailed three-dimensional finite element model of the face is presented in this paper. Bones, muscles, skin, fat, and superficial muscoloaponeurotic system were reconstructed from magnetic resonance images and modeled according to anatomical, plastic, and reconstructive surgery literature. The finite element mesh, composed of hexahedron elements, was generated through a semi-automatic procedure with an effective compromise between the detailed representation of anatomical parts and the limitation of the computational time. Nonlinear constitutive equations are implemented in the finite element model. The corresponding model parameters were selected according to previous work with mechanical measurements on soft facial tissue, or based on reasonable assumptions. Model assumptions concerning tissue geometry, interactions, mechanical properties, and the boundary conditions were validated through comparison with experiments. The calculated response of facial tissues to gravity loads, to the application of a pressure inside the oral cavity and to the application of an imposed displacement was shown to be in good agreement with the data from corresponding magnetic resonance images and holographic measurements. As a first application, gravimetric soft tissue descent was calculated from the long time action of gravity on the face in the erect position, with tissue aging leading to a loss of stiffness. Aging predictions are compared with the observations from an "aging database" with frontal photos of volunteers at different age ranges (i.e., 20-40 years and 50-70 years).
Based on these results, the distinct microstructural features characterizing SD lesions are accompanied by changes in the mechanical and optical properties. These changes however do not seem to affect the skin barrier and moisturization properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.