A hybrid (face-to-face and online) professional development (PD) course focused on energy science for middle and high school teachers (N = 47) was conducted using the teaching science as inquiry (TSI) framework. Data from the PD indicates that online opportunities enhanced participation and that the TSI structure improved teachers' inquiry implementation. Teachers found the TSI modes of inquiry easily accessible and effectively implemented them (modes correspond to the inquiry mechanisms of investigation, such as product evaluation, authoritative, inductive, deductive, and descriptive). On the other hand, the TSI phase structure (i.e. learning cycle) was most helpful for teachers novice to inquiry teaching, suggesting that modification of the PD is needed to promote more in-depth use of the phases in the TSI framework. In terms of content, teacher interest in energy science was high, which resulted in implementation of energy science activities across a range of disciplines. However, teachers' confidence in teaching energy science through inquiry was low compared to similar TSI PD courses on other subjects (mean perceived pedagogical content knowledge = 8.96 ± 2.07 SD for energy compared to 15.45 ± 1.83, 16.44 ± 1.81 and 15.63 ± 1.69, for elementary astronomy, high school aquatic science, and college aquatic science, respectively). These data support current findings on the complexities of teaching and understanding energy science content and suggest the need for additional teacher PD opportunities in energy science in order to provide opportunities for teachers to increase both their content knowledge and their confidence in teaching energy science.
Recent advances in internet technology have transformed how we gather and share information in today's world and have provided us with a platform to access educational resources and related information on the Internet. Every day, new technologies are developed that are changing the when and where we access that information. The capabilities of new technologies have allowed society to access information and learn virtually anywhere. As technical ingenuity continues to generate new technologies and paths of communication, we must look for opportunities to collaborate, share and extend our educational resources in higher education. Distributing Open Educational Resources (OER) in the form of freely licensed materials is necessary in order to laterally influence current advances in learning technologies. Online resources are being used in a variety of contexts to supplement instruction and training at higher education institutions. The aim of this Open Educational Resource project was to design and develop a blended learning instructional program to assist online users in developing familiarity with laboratory techniques prior to conducting molecular biology research in an authentic laboratory setting. This paper will look at the background of OER, describe the online materials that the Center for Cardiovascular Research (CCR) developed for open use, and discuss the outcomes and implications for use.
Professional development for science teachers can be benefited through active learning in science laboratories. However, how online training materials can be used to complement traditional laboratory training is less understood. This paper explores the design of online training modules to teach molecular biology and user perception of those modules that were part of an intensive molecular biology "boot camp" targeting high school biology teachers in the State of Hawaii. The John A. Burns School of Medicine at the University of Hawaii had an opportunity to design and develop professional development that prepares science teachers with an introduction of skills, techniques, and applications for their students to conduct medical research in a laboratory setting. A group of 29 experienced teachers shared their opinions of the online materials and reported on how they used the online materials in their learning process or teaching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.