Abstract-Climate change is an issue of growing economic, social, and political concern. Continued rise in the average temperatures of the Earth could lead to drastic climate change or an increased frequency of extreme events, which would negatively affect agriculture, population, and global health. One way of studying the dynamics of the Earth's changing climate is by attempting to identify regions that exhibit similar climatic behavior in terms of long-term variability. Climate networks have emerged as a strong analytics framework for both descriptive analysis and predictive modeling of the emergent phenomena. Previously, the networks were constructed using only one measure of similarity, namely the (linear) Pearson cross correlation, and were then clustered using a community detection algorithm. However, nonlinear dependencies are known to exist in climate, which begs the question whether more complex correlation measures are able to capture any such relationships. In this paper, we present a systematic study of different univariate measures of similarity and compare how each affects both the network structure as well as the predictive power of the clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.