Maximum Satisfiability (MaxSat) solving is an active area of research motivated by numerous successful applications to solving NPhard combinatorial optimization problems. One of the most successful approaches to solving MaxSat instances arising from real world applications is the Implicit Hitting Set (IHS) approach. IHS solvers are complete MaxSat solvers that harness the strengths of both Boolean Satisfiability (SAT) and Integer Linear Programming (IP) solvers by decoupling core-extraction and optimization. While such solvers show state-of-theart performance on many instances, it is known that there exist MaxSat instances on which IHS solvers need to extract an exponential number of cores before terminating. Motivated by the structure of the simplest of these problematic instances, we propose a technique we call abstract cores that provides a compact representation for a potentially exponential number of regular cores. We demonstrate how to incorporate abstract core reasoning into the IHS algorithm and report on an empirical evaluation demonstrating that including abstract cores into a state-of-the-art IHS solver improves its performance enough to surpass the best performing solvers of the most recent 2019 MaxSat Evaluation.
Maximum satisfiability (MaxSat) solving is an active area of research motivated by numerous successful applications to solving NP-hard combinatorial optimization problems. One of the most successful approaches for solving MaxSat instances from real world domains are the so called implicit hitting set (IHS) solvers. IHS solvers decouple MaxSat solving into separate core-extraction (i.e. reasoning) and optimization steps which are tackled by a Boolean satisfiability (SAT) and an integer linear programming (IP) solver, respectively. While the approach shows state-of-the-art performance on many industrial instances, it is known that there exists instances on which IHS solvers need to extract an exponential number of cores before terminating. Motivated by the simplest of these problematic instances, we propose abstract cores, a compact representation for a potentially exponential number of regular cores. We demonstrate how to incorporate abstract core reasoning into the IHS algorithm and report on an empirical evaluation demonstrating, that including abstract cores into a state-of-the-art IHS solver improves its performance enough to surpass the best performing solvers of the 2019 MaxSat Evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.