HIV-1 is a master at deceiving the immune system, usurping host biosynthetic machinery. Although HIV-1 is coated with host-derived glycoproteins only glycosylation of viral gp120 has been described. Herein we utilize lectin microarray technology to analyze the glycome of intact HIV-1 virions. We show that the glycan coat of human T-cell line-derived HIV-1 matches that of native immunomodulatory microvesicles. The carbohydrate composition of both virus and microvesicles is cell-line dependent, suggesting a mechanism to rapidly camouflage the virus within the host. In addition, binding of both virus and microvesicles to antiviral lectins is enriched over the host cell, raising concern about targeting these glycans for therapeutics. This work also sheds light on the binding of HIV-1 to galectin-1, an important human immune lectin. Overall, our work strongly supports the theory that HIV-1 co-opts the exocytic pathway of microvesicles, potentially explaining why eliciting a protective antiviral immune response is difficult.
Background: Stress-related mechanisms are implicated in the pathophysiology of bipolar disorder and may contribute to heterogeneity in illness course. Yet, there is a lack of study investigating the neural mechanisms underlying the stress response in this condition. This study investigated changes in amygdala activation and functional connectivity in response to acute psychosocial stress in young adults with bipolar disorder and explored relations with clinical phenotype and prospective mood symptoms.Methods: 42 young adults [19 with bipolar disorder, age mean ± SD =21.4 ± 2.2 years] completed a modified version of the Montreal Imaging Stress Task. Amygdala activation and functional connectivity with prefrontal cortex (PFC) regions of interest was calculated for control and stress conditions. Main effects of group, condition, and group by condition interaction on amygdala activation and connectivity were modeled. A subset of bipolar participants completed 1-year follow-up assessments.Relations between neural responses to stress with concurrent substance use and prospective mood symptoms were explored.Results: There were no between-group differences in amygdala activation or functional connectivity during the control condition. Increased right amygdala-right rostral PFC (rPFC) functional connectivity to stress was observed in bipolar disorder, compared to typically developing controls. In bipolar disorder, greater increase in right amygdala-right rPFC functional connectivity to stress was associated with less frequent cannabis use, and prospectively with shorter duration and lower severity of depression symptoms over follow-up.
Conclusion:Results from this preliminary study suggest differences in frontolimbic functional connectivity responses to stress in young adults with bipolar disorder and associations with cannabis use and prospective mood symptoms.
This chapter explores the connection between trauma and personality disorders (PDs). The mindset of a survivor of trauma is examined to elucidate how patterns of behavior evolve after trauma that may lead to the development of character pathology. Psychological etiologic theories coupled with neuroanatomical changes from neuroimaging research are reviewed. Details on both structural and functional magnetic resonance imaging findings specific to PDs in the context of early-life adversity are reviewed. Borderline, schizotypal, paranoid, and antisocial PDs s are highlighted in detail to assess both the psychological and known biological dimensions of the impact of trauma in the formation of these disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.