The advances in the Information and Communications Technology (ICT) brought many benefits to the healthcare area, specially to digital storage of patients' health records. However, it is still a challenge to have a unified viewpoint of patients' health history, because typically health data is scattered among different health organizations. Furthermore, there are several standards for these records, some of them open and others proprietary. Usually health records are stored in databases within health organizations and rarely have external access. This situation applies mainly to cases where patients' data are maintained by healthcare providers, known as EHRs (Electronic Health Records). In case of PHRs (Personal Health Records), in which patients by definition can manage their health records, they usually have no control over their data stored in healthcare providers' databases. Thereby, we envision two main challenges regarding PHR context: first, how patients could have a unified view of their scattered health records, and second, how healthcare providers can access up-to-date data regarding their patients, even though changes occurred elsewhere. For addressing these issues, this work proposes a model named OmniPHR, a distributed model to integrate PHRs, for patients and healthcare providers use. The scientific contribution is to propose an architecture model to support a distributed PHR, where patients can maintain their health history in an unified viewpoint, from any device anywhere. Likewise, for healthcare providers, the possibility of having their patients data interconnected among health organizations. The evaluation demonstrates the feasibility of the model in maintaining health records distributed in an architecture model that promotes a unified view of PHR with elasticity and scalability of the solution.
BackgroundInformation and communication technology (ICT) has transformed the health care field worldwide. One of the main drivers of this change is the electronic health record (EHR). However, there are still open issues and challenges because the EHR usually reflects the partial view of a health care provider without the ability for patients to control or interact with their data. Furthermore, with the growth of mobile and ubiquitous computing, the number of records regarding personal health is increasing exponentially. This movement has been characterized as the Internet of Things (IoT), including the widespread development of wearable computing technology and assorted types of health-related sensors. This leads to the need for an integrated method of storing health-related data, defined as the personal health record (PHR), which could be used by health care providers and patients. This approach could combine EHRs with data gathered from sensors or other wearable computing devices. This unified view of patients’ health could be shared with providers, who may not only use previous health-related records but also expand them with data resulting from their interactions. Another PHR advantage is that patients can interact with their health data, making decisions that may positively affect their health.ObjectiveThis work aimed to explore the recent literature related to PHRs by defining the taxonomy and identifying challenges and open questions. In addition, this study specifically sought to identify data types, standards, profiles, goals, methods, functions, and architecture with regard to PHRs.MethodsThe method to achieve these objectives consists of using the systematic literature review approach, which is guided by research questions using the population, intervention, comparison, outcome, and context (PICOC) criteria.ResultsAs a result, we reviewed more than 5000 scientific studies published in the last 10 years, selected the most significant approaches, and thoroughly surveyed the health care field related to PHRs. We developed an updated taxonomy and identified challenges, open questions, and current data types, related standards, main profiles, input strategies, goals, functions, and architectures of the PHR.ConclusionsAll of these results contribute to the achievement of a significant degree of coverage regarding the technology related to PHRs.
Health information technology, applied to electronic health record (EHR), has evolved with the adoption of standards for defining patient health records. However, there are many standards for defining such data, hindering communication between different healthcare providers. Even with adopted standards, patients often need to repeatedly provide their health information when they are taken care of at different locations. This problem hinders the adoption of personal health record (PHR), with the patients' health records under their own control. Therefore, the purpose of this work is to propose an interoperability model for PHR use. The methodology consisted prototyping an application model named OmniPHR, to evaluate the structuring of semantic interoperability and integration of different health standards, using a real database from anonymized patients. We evaluated health data from a hospital database with 38,645 adult patients' medical records processed using different standards, represented by openEHR, HL7 FHIR, and MIMIC-III reference models. OmniPHR demonstrated the feasibility to provide interoperability through a standard ontology and artificial intelligence with natural language processing (NLP). Although the first executions reached a 76.39% F1-score and required retraining of the machine-learning process, the final score was 87.9%, presenting a way to obtain the original data from different standards on a single format. Unlike other models, OmniPHR presents a unified, structural semantic and up-to-date vision of PHR for patients and healthcare providers. The results were promising and demonstrated the possibility of subsidizing the creation of inferences rules about possible patient health problems or preventing future problems.
The Internet of Things (IoT) adoption grows significantly and is successful in many different domains. Nevertheless, the ever-growing demand for more connected devices pushes the requirement for scalable IoT architectures capable of maintaining the security and privacy of collected data. The latter is a particularly critical aspect when considering sensitive data, e.g., medical records. One solution to address this challenge is to modify the centralized back-end model to one based on a Blockchain, changing the way IoT data is stored and shared by providing a decentralized peer-to-peer network. This technology enables naming and tracking for connected devices, and in the case of this article, features a high availability of Personal Health Records, yet protecting patients' privacy through the use of cryptography. Furthermore, the addition of Fog computing mechanisms helps to achieve real-time data processing, supports precision medicine, and avoids single points of failure. As a result, devices have a local and more resilient ecosystem for operation. In this context, this work proposes an architecture model named FogChain, which combines the technologies Blockchain, Fog computing, and the IoT for the healthcare domain. Our main contribution is the FogChain model itself, and its concept of overcoming IoT constraints by employing a differential approach, adding an intermediary Fog layer near to the edge to improve their capabilities and resources. Experiments demonstrate that FogChain can achieve a 62.6% faster response time when compared to Cloudlike Blockchain infrastructures. The results obtained from the evaluation endorses the capacity of our model in achieving its goals while retaining application performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.